Home

Awesome

SAM-MIL (Updating)

Official repository of "SAM-MIL: A Spatial Contextual Aware Multiple Instance Learning Approach for Whole Slide Image Classification", ACM Multimedia 2024. [arXiv] [PDF] [ACM]

<p align = "center"> <img src="./doc/sammil.png" width="60%"/> </p>

TODO

Preparation

We used the Segment Anything Model from the official repository to implement visual segmentation of WSIs.

Preprocessing

The preprocessing code can be found in the WSI_preprocess folder.

1. Create patches and SAM segmentations for the WSIs.

Camelyon16:

python 01_create_patches_and_sam_segment.py --source '/path/to/your/WSI/folder' --save_dir 'path/to/save/patches' --patch_size 512 --step_size 512 --preset 'bwh_biopsy.csv' --seg --patch --stitch --use_sam --sam_checkpoint 'path/to/sam_weights.pth'

TCGA-NSCLC:

python 01_create_patches_and_sam_segment.py --source '/path/to/your/WSI/folder' --save_dir '/path/to/save/patches' --patch_size 512 --step_size 512 --preset 'tcga.csv' --seg --patch --stitch --use_sam --sam_checkpoint '/path/to/sam_weights.pth'

2. Extract the features from the patches and SAM segmentations.

Camelyon16:

python 02_extract_features_and_group_feature.py --data_h5_dir '/path/to/patches' --data_slide_dir '/path/to/WSIs' --data_segment_dir '/path/to/segments' --csv_path '/path/to/process_list_autogen.csv' --feat_dir '/path/to/save/features' --use_sam --patch_size 512 --batch_size 512 --target_patch_size 224 --slide_ext .tif

TCGA-NSCLC:

python 02_extract_features_and_group_feature.py --data_h5_dir '/path/to/patches' --data_slide_dir '/path/to/WSIs' --data_segment_dir '/path/to/segments' --csv_path '/path/to/process_list_autogen.csv' --feat_dir '/path/to/save/features' --use_sam --patch_size 512 --batch_size 512 --target_patch_size 224 --slide_ext .svs

2-1. (Optional) Generate feature from original extracted features.

If you have already extracted the features from the patches, you can use the following code to generate the features for the model input.

From features(.h5) to our model input:

python extract_features_from_h5.py --data_feat_h5_dir '/path/to/h5/features' --data_slide_dir '/path/to/WSIs' --data_segment_dir '/path/to/segments' --csv_path '/path/to/process_list_autogen.csv' --feat_dir '/path/to/save/features' --patch_size 512 --slide_ext .tif/.svs

From features(.pt) to our model input:

python extract_features_from_pt.py --data_feat_pt_dir '/path/to/pt/features' --data_slide_dir '/path/to/WSIs' --data_segment_dir '/path/to/segments' --csv_path '/path/to/process_list_autogen.csv' --feat_dir '/path/to/save/features' --patch_size 512 --slide_ext .tif/.svs

3. Generate SAM info:

python 03_extract_sam_info.py --data_feat_h5_dir '/path/to/h5/features' --data_slide_dir '/path/to/WSIs' --data_segment_dir '/path/to/segments' --csv_path '/path/to/process_list_autogen.csv' --output_dir '/path/to/save/sam_info' --data_group_dir '/path/to/seg_files' --slide_ext .tif/.svs

Folder Structure

.DATASET_ROOT//
    ├── pt_files    // The extracted features in .pt format
        ├── slide1.pt
        ├── slide2.pt
        └── ...
    ├── h5_files    // (Optional) The extracted features in .h5 format
        ├── slide1.h5
        ├── slide2.h5
        └── ...
    ├── sam_info    // The SAM information inputs
        ├── slide1.h5
        ├── slide2.h5
        └── ...
    └── labels.csv  // The labels of the slides

Feature Extraction

Some code snippets about PLIP feature are shown below:

extract_features_fp.py:

model = PLIP()
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
mean, std = (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)
eval_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean = mean, std = std)])

models/plip.py

from transformers import CLIPVisionModelWithProjection

class PLIP(torch.nn.Module):
    def __init__(self):
        super(PLIPM,self).__init__()
        self.model = model = CLIPVisionModelWithProjection.from_pretrained("vinid/plip")
    def forward(self, input):
        return self.model(batch_input).image_embeds

Training

The arguments for training can be found in options.py.

Train the model:

python main.py --project=your_project --datasets=camelyon16/tcga --dataset_root=/path/to/your/dataset --model_path=/path/to/save/model --cv_fold=5 --title=your_title --model=sam --sam_mask --mask_non_group_feat --mask_by_seg_area --baseline=attn --mrh_sche --seed=2021 --mask_ratio=0.9 --select_mask --num_group=5 --group_alpha=0.5 --consistency_alpha=1000 --num_workers=0 --persistence --wandb

Citing SAM-MIL

If you find SAM-MIL useful in your research, please consider citing the following paper:

@inproceedings{fang2024sam,
  title={SAM-MIL: A Spatial Contextual Aware Multiple Instance Learning Approach for Whole Slide Image Classification},
  author={Fang, Heng and Huang, Sheng and Tang, Wenhao and Huangfu, Luwen and Liu, Bo},
  booktitle={Proceedings of the 32nd ACM International Conference on Multimedia},
  pages={6083--6092},
  year={2024}
}