Awesome
DSLRDNet
This is the official implementation for the paper "Addressing Multiple Salient Object Detection via Dual-Space Long-Range Dependencies", accepted by the Journal of Computer Vision and Image Understanding (CVIU 2023).
Prerequisites:
- Pytorch 1.2.0
- Opencv 2.4.5
- TensorboardX
For training:
- Download the DUTS-TR (Google Drive) training dataset.
- Download the initial pratrained VGG/ResNet (Google Drive) model.
- Change the training data path in dataset.py.
- Change the training settings in solver.py and run.py
- Start to train with
python3 run.py --mode train
For testing:
- Download the pretrained models (Google Drive).
- Change the data path in dataset.py
- Change the test settings in run.py.
- Generate saliency maps with
python3 run.py --mode test --sal_mode m
, where 'm' demonstrates the MSOD dataset. - We use the public open source evaluation code. (https://github.com/weijun88/F3Net)
Datasets and results:
MSOD dataset || Generated Saliency Maps (Google Drive)
Citing DSLRDNet:
@article{deng2023addressing,
title={Addressing multiple salient object detection via dual-space long-range dependencies},
author={Deng, Bowen and French, Andrew P and Pound, Michael P},
journal={Computer Vision and Image Understanding},
volume={235},
pages={103776},
year={2023},
publisher={Elsevier}
}