Home

Awesome

ServiceNow completed its acquisition of Element AI on January 8, 2021. All references to Element AI in the materials that are part of this project should refer to ServiceNow.

PWC

HighRes-net: Multi Frame Super-Resolution by Recursive Fusion

Pytorch implementation of HighRes-net, a neural network for multi frame super-resolution (MFSR), trained and tested on the European Space Agency's Kelvin competition.

Computer, enhance please!

alt HRNet in action 1

alt HRNet in action 2

source: ElementAI blog post Computer, enhance please!

credits: ESA Kelvin Competition

A recipe to enhance the vision of the ESA satellite Proba-V

Hardware:

The default config should work on a machine with:

GPU: Nvidia Tesla v100, memory 32G

Driver version: CUDA 10.0

CPU: memory 8G to enable running jupyter notebook server and tensorboard server

If your available GPU memory is less than 32G, try following to reduce the memory usage

(1) Work with smaller batches (batch_size in config.json)

(2) Work with less low-res views (n_views and min_L in config.json, min_L is minimum number of views (n_views))

According to our experiments, we estimated the memory consumption (in GB) given batch_size and n_views

batch_size \ n_views and min_L32164
3227156
161584

0. Setup python environment

pip install -r requirements.txt

1. Load data and save clearance

python src/save_clearance.py --prefix /path/to/ESA_data

2. Train model and view logs (with TensorboardX)

python src/train.py --config config/config.json
tensorboard --logdir='tb_logs/'

3. Test model

You could also use docker-compose file to start jypyter notebook and tensorboard

Authors

HighRes-net is based on work by team Rarefin, an industrial-academic partnership between ElementAI AI for Good lab in London (Zhichao Lin, Michel Deudon, Alfredo Kalaitzis, Julien Cornebise) and Mila in Montreal (Israel Goytom, Kris Sankaran, Md Rifat Arefin, Samira E. Kahou, Vincent Michalski)

License

This repo is under apache-2.0 and no harm license, please refer our license file

Acknowledgments

Special thanks to Laure Delisle, Grace Kiser, Alexandre Lacoste, Yoshua Bengio, Peter Henderson, Manon Gruaz, Morgan Guegan and Santiago Salcido for their support.

We are grateful to Marcus Märtens, Dario Izzo, Andrej Krzic and Daniel Cox from the Advanced Concept Team of the ESA for organizing this competition and assembling the dataset — we hope our solution will contribute to your vision for scalable environmental monitoring.