Awesome
AcademicBART
We pretrained a BART-based Japanese masked language model on paper abstracts from the academic database CiNii Articles.
Download
They include a pretrained roberta model (best_model.pt), a sentencepiece model (sp.model) , a dictionary (dict.txt) and code for applying sentencepiece (apply-sp.py) .
wget http://aiweb.cs.ehime-u.ac.jp/~yamauchi/academic_model/Academic_BART_base.tar.gz
Hugging Face
https://huggingface.co/EhimeNLP/AcademicBART
Requirements
Python >= 3.8 <br> fairseq == 0.12.2 (In working order)<br> sentencepiece <br> tensorboardX (optional) <br>
Preprocess
We applied SentencePiece for subword segmentation. <br> Prepare datasets ($TRAIN_SRC, ...), which format assumes a tab delimiter between text and label.
python ./apply-sp.py $TRAIN_SRC $DATASET_DIR/train.src-tgt -bpe_model $SENTENCEPIECE_MODEL
python ./apply-sp.py $VALID_SRC $DATASET_DIR/valid.src-tgt -bpe_model $SENTENCEPIECE_MODEL
python ./apply-sp.py $TEST_SRC $DATASET_DIR/test.src-tgt -bpe_model $SENTENCEPIECE_MODEL
fairseq-preprocess \
--source-lang "src" \
--target-lang "tgt" \
--trainpref "${DATASET_DIR}/train.src-tgt" \
--validpref "${DATASET_DIR}/valid.src-tgt" \
--testpref "${DATASET_DIR}/test.src-tgt" \
--destdir "data-bin/" \
--workers 60 \
--srcdict ${DICT} \
--tgtdict ${DICT}
Finetune
The procedure for summary using AcademicBART is as follows.
fairseq-train data-bin/ \
--restore-file $BART_PATH \
--max-tokens 512 --max-sentences $MAX_SENTENCES \
--task translation \
--source-lang src --target-lang tgt \
--truncate-source \
--layernorm-embedding \
--share-all-embeddings \
--share-decoder-input-output-embed \
--reset-optimizer --reset-dataloader --reset-meters \
--required-batch-size-multiple 1 \
--arch bart_base \
--criterion label_smoothed_cross_entropy \
--label-smoothing 0.1 \
--dropout 0.1 --attention-dropout 0.1 \
--weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.999)" --adam-eps 1e-08 \
--clip-norm 0.1 \
--lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
--fp16 --update-freq $UPDATE_FREQ \
--skip-invalid-size-inputs-valid-test \
--no-epoch-checkpoints \
--save-interval-updates $SAVE_INTERVAL --save-dir result_test \
--patience 5 \
Reference
山内洋輝, 梶原智之, 桂井麻里衣, 大向一輝, 二宮崇.<br> 学術ドメインに特化した日本語事前訓練モデルの構築. <br> 言語処理学会第29回年次大会, pp.2842-2846, 2023.