Home

Awesome

Unexplored Faces of Robustness and Out-of-Distribution: Covariate Shifts in Environment and Sensor Domains (CVPR 2024)

ImageNet-ES

In contrast to conventional robustness benchmarks that rely on digital perturbations, we directly capture 202k images by using a real camera in a controllable testbed. The dataset presents a wide range of covariate shifts caused by variations in light and camera sensor factors. [pdf]

Download ImageNet-ES here <img align="center" src="supples/ImageNet-ES.jpg" width="800">

ImageNet-ES strucuture

ImageNet-ES
├── es-train
│   └── tin_no_resize_sample_removed 
│   # 8K original validation samples of Tiny-ImageNet without references
├── es-val
│   ├── auto_exposure 
│   ├── param_control
│   └── sampled_tin_no_resize # reference samples (1K)
├── es-test
    ├── auto_exposure 
    ├── param_control
    └── sampled_tin_no_resize2 # reference samples (1K)

The main paper and the appendix explain more details about dataset specification.

ES-Studio

To compensate the missing perturbations in current robustness benchmarks, we construct a new testbed, ES-Studio (Environment and camera Sensor perturbation Studio). It can control physical light and camera sensor parameters during data collection.

<img align="center" src="supples/Testbed.png" width="800"> <img align="center" src="supples/Testbed_actual.jpg" width="800">

Experiments

Environment Setup (Will be merged)

We use PyTorch and other packages. Please use the following command to install the necessary packages:

conda create -n ies python=3.10
conda activate ies
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
cd ImageNet-ES/
pip install -r requirements.txt
conda create -n ies_dg python=3.9
conda activate ies_dg
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia
pip install timm==0.9.10 pandas==1.5.3 lpips opencv_python

Datasets

Please prepare the datasets as following in the same directory.

OOD Detection

Please follow below steps to produce the experimental results for 5.1 OOD Detection in the main paper and related parts in the appendix.

Domain generalization techniques

Please follow below steps to produce the experimental results for 5.2 Domain Generalization in the main paper and related parts in the appendix.

Sensor Paramter Control

Please follow below steps to produce the experimental results for 5.3 Sensor Paramter Control in the main paper and related parts in the appendix.

Citations