Home

Awesome

Adam optimiser

This is a Matlab implementation of the Adam optimiser from Kingma and Ba [1], designed for stochastic gradient descent. It maintains estimates of the moments of the gradient independently for each parameter.

Usage

[x, fval, exitflag, output] = fmin_adam(fun, x0 <, stepSize, beta1, beta2, epsilon, nEpochSize, options>)

fmin_adam is an implementation of the Adam optimisation algorithm (gradient descent with Adaptive learning rates individually on each parameter, with Momentum) from Kingma and Ba [1]. Adam is designed to work on stochastic gradient descent problems; i.e. when only small batches of data are used to estimate the gradient on each iteration, or when stochastic dropout regularisation is used [2].

Examples

###Simple regression problem with gradients

Set up a simple linear regression problem: $$$y = x\cdot\phi_1 + \phi_2 + \zeta$$$, where $$$\zeta \sim N(0, 0.1)$$$. We'll take $$$\phi = \left[3, 2\right]$$$ for this example. Let's draw some samples from this problem:

nDataSetSize = 1000;
vfInput = rand(1, nDataSetSize);
phiTrue = [3 2];
fhProblem = @(phi, vfInput) vfInput .* phi(1) + phi(2);
vfResp = fhProblem(phiTrue, vfInput) + randn(1, nDataSetSize) * .1;
plot(vfInput, vfResp, '.'); hold;
<img src="images/regression_scatter.png" />

Now we define a cost function to minimise, which returns analytical gradients:

function [fMSE, vfGrad] = LinearRegressionMSEGradients(phi, vfInput, vfResp)
   % - Compute mean-squared error using the current parameter estimate
   vfRespHat = vfInput .* phi(1) + phi(2);
   vfDiff = vfRespHat - vfResp;
   fMSE = mean(vfDiff.^2) / 2;
   
   % - Compute the gradient of MSE for each parameter
   vfGrad(1) = mean(vfDiff .* vfInput);
   vfGrad(2) = mean(vfDiff);
end

Initial parameters phi0 are Normally distributed. Call the fmin_adam optimiser with a learning rate of 0.01.

phi0 = randn(2, 1);
phiHat = fmin_adam(@(phi)LinearRegressionMSEGradients(phi, vfInput, vfResp), phi0, 0.01)
plot(vfInput, fhProblem(phiHat, vfInput), '.');

Output:

 Iteration   Func-count         f(x)   Improvement    Step-size
----------   ----------   ----------   ----------   ----------
      2130         4262       0.0051        5e-07      0.00013
----------   ----------   ----------   ----------   ----------

Finished optimization.
   Reason: Function improvement [5e-07] less than TolFun [1e-06].

phiHat =
    2.9498
    2.0273
<img src="images/regression_fit.png" />

###Linear regression with minibatches

Set up a simple linear regression problem, as above.

nDataSetSize = 1000;
vfInput = rand(1, nDataSetSize);
phiTrue = [3 2];
fhProblem = @(phi, vfInput) vfInput .* phi(1) + phi(2);
vfResp = fhProblem(phiTrue, vfInput) + randn(1, nDataSetSize) * .1;

Configure minibatches. Minibatches contain random sets of indices into the data.

nBatchSize = 50;
nNumBatches = 100;
mnBatches = randi(nDataSetSize, nBatchSize, nNumBatches);
cvnBatches = mat2cell(mnBatches, nBatchSize, ones(1, nNumBatches));
figure; hold;
cellfun(@(b)plot(vfInput(b), vfResp(b), '.'), cvnBatches);
<img src="images/regression_minibatches.png" />

Define the function to minimise; in this case, the mean-square error over the regression problem. The iteration index nIter defines which mini-batch to evaluate the problem over.

fhBatchInput = @(nIter) vfInput(cvnBatches{mod(nIter, nNumBatches-1)+1});
fhBatchResp = @(nIter) vfResp(cvnBatches{mod(nIter, nNumBatches-1)+1});
fhCost = @(phi, nIter) mean((fhProblem(phi, fhBatchInput(nIter)) - fhBatchResp(nIter)).^2);

Turn off analytical gradients for the adam optimiser, and ensure that we permit sufficient function calls.

sOpt = optimset('fmin_adam');
sOpt.GradObj = 'off';
sOpt.MaxFunEvals = 1e4;

Call the fmin_adam optimiser with a learning rate of 0.1. Initial parameters are Normally distributed.

phi0 = randn(2, 1);
phiHat = fmin_adam(fhCost, phi0, 0.1, [], [], [], [], sOpt)

The output of the optimisation process (which will differ over random data and random initialisations):

Iteration   Func-count         f(x)   Improvement    Step-size
----------   ----------   ----------   ----------   ----------
       711         2848          0.3       0.0027      3.8e-06
----------   ----------   ----------   ----------   ----------

Finished optimization.
   Reason: Step size [3.8e-06] less than TolX [1e-05].

phiHat =
    2.8949
    1.9826

Detailed usage

Input arguments

fun is a function handle [fCost <, vfCdX>] = @(x <, nIter>) defining the function to minimise . It must return the cost at the parameter x, optionally evaluated over a mini-batch of data. If analytical gradients are available (recommended), then fun must return the gradients in vfCdX, evaluated at x (optionally over a mini-batch). If analytical gradients are not available, then complex-step finite difference estimates will be used.

To use analytical gradients (default), set options.GradObj = 'on'. To force the use of finite difference gradient estimates, set options.GradObj = 'off'.

fun must be deterministic in its calculation of fCost and vfCdX, even if mini-batches are used. To this end, fun can accept a parameter nIter which specifies the current iteration of the optimisation algorithm. fun must return estimates over identical problems for a given value of nIter.

Steps that do not lead to a reduction in the function to be minimised are not taken.

Output arguments

x will be a set of parameters estimated to minimise fCost. fval will be the value returned from fun at x.

exitflag will be an integer value indicating why the algorithm terminated:

output will be a structure containing information about the optimisation process:

The optional parameters stepSize, beta1, beta2 and epsilon are parameters of the Adam optimisation algorithm (see [1]). Default values of {1e-3, 0.9, 0.999, sqrt(eps)} are reasonable for most problems.

The optional argument nEpochSize specifies how many iterations comprise an epoch. This is used in the convergence detection code.

The optional argument options is used to control the optimisation process (see optimset). Relevant fields:

References

[1] Diederik P. Kingma, Jimmy Ba. "Adam: A Method for Stochastic Optimization", ICLR 2015. https://arxiv.org/abs/1412.6980

[2] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhutdinov. "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint. https://arxiv.org/abs/1207.0580