Awesome
SOLUTION WRITE UP -
https://www.kaggle.com/c/aptos2019-blindness-detection/discussion/108030
Kaggle-APTOS-2019-Blindness-Detection
About Challange:
Imagine being able to detect blindness before it happened.
Millions of people suffer from diabetic retinopathy, the leading cause of blindness among working aged adults. Aravind Eye Hospital in India hopes to detect and prevent this disease among people living in rural areas where medical screening is difficult to conduct. Successful entries in this competition will improve the hospital’s ability to identify potential patients. Further, the solutions will be spread to other Ophthalmologists through the 4th Asia Pacific Tele-Ophthalmology Society (APTOS) Symposium
Currently, Aravind technicians travel to these rural areas to capture images and then rely on highly trained doctors to review the images and provide diagnosis. Their goal is to scale their efforts through technology; to gain the ability to automatically screen images for disease and provide information on how severe the condition may be.
In this synchronous Kernels-only competition, you'll build a machine learning model to speed up disease detection. You’ll work with thousands of images collected in rural areas to help identify diabetic retinopathy automatically. If successful, you will not only help to prevent lifelong blindness, but these models may be used to detect other sorts of diseases in the future, like glaucoma and macular degeneration.
SETUP
OLD DATA - Diabetic Retinopathy Detection (https://www.kaggle.com/c/diabetic-retinopathy-detection) <br/> NEW DATA - APTOS 2019 Blindness Detection (https://www.kaggle.com/c/aptos2019-blindness-detection/data)
EXP_725 (LB: 0.808)
I am gonna first pretrain model on OLD DATA and than fine tune on NEW DATA with 5-fold cross-validaion Important transformation here is zoom crop to the center from (0.9 to 1.4)
EXP_725.ipynb
MODEL: EfficientNet-B5
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 128
SZ: 224
VALID: NEW DATA
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
max_zoom(1.3),
p_lighting(0.5),
zoom_crop(scale=(0.9, 1.4), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(10, 1e-3, wd=1e-2, div_factor=10, pct_start=0.3)-UNF
fit_one_cycle(5, 1e-3/5, wd=1e-2, div_factor=10, pct_start=0.3)-UNF
fit_one_cycle(30, 1e-3/8, wd=1e-2, div_factor=10, pct_start=0.3)-UNF
MODEL WEIGHTS: NB_EXP_725_UNFREEZE_P3
MODEL TRN_LOSS: 0.305515
MODEL VAL_LOSS: 0.342098
QUADR KAPPA: 0.887489
LB SCORE: 0.725
SUBMISSION FLN: EXP_725(version 11/14)
Comments: Pretrained model trained just OLD DATA gives pretty good results. Now using best weight to fine tune new data
[EXP_725-CV_0 - EXP_725-CV_4].ipynb
Using weights NB_EXP_725_UNFREEZE_P3
To train NEW DATA with 5 fold splits. <br/>
Set up for all CV experimetns:
MODEL: EfficientNet-B5
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 128
SZ: 224
VALID: NEW DATA CV SPLIT
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
max_zoom(1.3),
p_lighting(0.5),
zoom_crop(scale=(0.9, 1.4), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(15, 1e-3, wd=1e-2, div_factor=10, pct_start=0.3)-UNF
Summary:
Notebook Name | Train Loss | Valid Loss | Quadratic Kappa | Weights |
---|---|---|---|---|
EXP_725-CV_0 | 0.303028 | 0.198670 | 0.924300 | NB_EXP_725_CV_0_UNFREEZE_P1 |
EXP_725-CV_1 | 0.259711 | 0.261448 | 0.909077 | NB_EXP_725_CV_1_UNFREEZE_P1 |
EXP_725-CV_2 | 0.318001 | 0.231378 | 0.914873 | NB_EXP_725_CV_2_UNFREEZE_P1 |
EXP_725-CV_3 | 0.201959 | 0.182800 | 0.929271 | NB_EXP_725_CV_3_UNFREEZE_P1 |
EXP_725-CV_4 | 0.195760 | 0.204893 | 0.937953 | NB_EXP_725_CV_4_UNFREEZE_P1 |
Submission (Average all the predictions)
LB SCORE: 0.808
SUBMISSION FLN: EXP_725(version 12/14)
EXP_725_352 (LB: 0.785)
Same as EXP_725
but increased image size to 352 and added more robust center zoom crop (1.1 - 1.45x). Trained using weights from EXP_725
, NB_EXP_725_UNFREEZE_P3
EXP_725_352.ipynb
MODEL: EfficientNet-B5
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 56
SZ: 352
VALID: NEW DATA
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
max_zoom(1.3),
p_lighting(0.5),
zoom_crop(scale=(1.1, 1.45), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(5, 1e-3, wd=1e-2, div_factor=10, pct_start=0.3)-UNF
fit_one_cycle(3, 1e-3/10, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
MODEL WEIGHTS: NB_EXP_725_352_UNFREEZE_P2
MODEL TRN_LOSS: 0.289148
MODEL VAL_LOSS: 0.335972
QUADR KAPPA: 0.893238
LB SCORE: 0.727
SUBMISSION FLN: EXP_725_352(version 16/17)
Comments: Pretrained model on NB_EXP_725_UNFREEZE_P3
with image siae 224
, Increaseing image size to 352
and adding extra zoom helped with the validation loss.
[EXP_725_352-CV_0 - EXP_725_352-CV_4].ipynb
Using weights NB_EXP_725_UNFREEZE_P3
To train NEW DATA with 5 fold splits. <br/>
Set up for all CV experimetns:
MODEL: EfficientNet-B5
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 56
SZ: 352
VALID: NEW DATA CV SPLIT
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
max_zoom(1.3),
p_lighting(0.5),
zoom_crop(scale=(1.1, 1.45), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(15, 1e-3, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
Summary:
Notebook Name | Train Loss | Valid Loss | Quadratic Kappa | Weights |
---|---|---|---|---|
EXP_725_352-CV_0 | 0.214058 | 0.191476 | 0.926447 | NB_EXP_725_352_CV_0_UNFREEZE_P1 |
EXP_725_352-CV_1 | 0.220699 | 0.232317 | 0.914668 | NB_EXP_725_352_CV_1_UNFREEZE_P1 |
EXP_725_352-CV_2 | 0.216604 | 0.218829 | 0.921627 | NB_EXP_725_352_CV_2_UNFREEZE_P1 |
EXP_725_352-CV_3 | 0.222879 | 0.165061 | 0.931339 | NB_EXP_725_352_CV_3_UNFREEZE_P1 |
EXP_725_352-CV_4 | 0.218691 | 0.189928 | 0.936874 | NB_EXP_725_352_CV_4_UNFREEZE_P1 |
Submission (Average all the predictions)
LB SCORE: 0.785
SUBMISSION FLN: EXP_725_352(version 15/15)
EXP_730_BEN (LB: 0.804)
Same as EXP_725
added more robust center zoom crop (1.02 - 1.35x). Trained using weights from EXP_725
, NB_EXP_725_UNFREEZE_P3
. Images this time were proces. with Ben Method. Old ben method was not taking in two condiseration image ratio when resizing, I have added function resize_to
which preserves image ratio when resizing. For proceessing images I used notebook BEN_PROCESS.ipynb
EXP_730.ipynb
MODEL: EfficientNet-B5
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 128
SZ: 224
VALID: NEW DATA
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
max_zoom(1.3),
p_lighting(0.5),
zoom_crop(scale=(1.02, 1.35), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(10, 1e-3, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
MODEL WEIGHTS: NB_EXP_725_352_UNFREEZE_P2
MODEL TRN_LOSS: 0.316414
MODEL VAL_LOSS: 0.302961
QUADR KAPPA: 0.896701
LB SCORE: 0.755
SUBMISSION FLN: EXP_725_352(version 17/17)
Comments: Model trained using old data and weights from EXP_725, showed good training and loss.
[EXP_730-CV_0 - EXP_730-CV_4].ipynb
Using weights NB_EXP_730_UNFREEZE_P1
To train NEW DATA with 5 fold splits. <br/>
Set up for all CV experimetns:
MODEL: EfficientNet-B5
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 56
SZ: 352
VALID: NEW DATA CV SPLIT
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
max_zoom(1.3),
p_lighting(0.5),
zoom_crop(scale=(1.01, 1.35), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(15, 1e-3, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
Summary:
Notebook Name | Train Loss | Valid Loss | Quadratic Kappa | Weights |
---|---|---|---|---|
EXP_730-CV_0 | 0.230880 | 0.214356 | 0.920836 | NB_EXP_730_CV_0_UNFREEZE_P1 |
EXP_730-CV_1 | 0.298317 | 0.251441 | 0.918218 | NB_EXP_730_CV_1_UNFREEZE_P1 |
EXP_730-CV_2 | 0.216604 | 0.299689 | 0.904481 | NB_EXP_730_CV_2_UNFREEZE_P1 |
EXP_730-CV_3 | 0.178483 | 0.176829 | 0.932204 | NB_EXP_730_CV_3_UNFREEZE_P1 |
EXP_730-CV_4 | 0.170133 | 0.235239 | 0.928617 | NB_EXP_730_CV_4_UNFREEZE_P1 |
Submission (Average all the predictions)
LB SCORE: 0.804
SUBMISSION FLN: EXP_730_BEN(version 22/22)
EXP_730_352_BEN (LB: TBD)
Same as EXP_730_BEN
added more robust center zoom crop (1.02 - 1.35x) and the image size increased to 352
. Trained using weights from EXP_730_BEN
, NB_EXP_730_UNFREEZE_P1
.
EXP_730_352.ipynb
MODEL: EfficientNet-B5
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 56
SZ: 352
VALID: NEW DATA
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
max_zoom(1.3),
p_lighting(0.5),
zoom_crop(scale=(1.02, 1.35), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(5, 1e-3/2, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
MODEL WEIGHTS: NB_EXP_730_352_UNFREEZE_P1
MODEL TRN_LOSS: 0.224072
MODEL VAL_LOSS: 0.342114
QUADR KAPPA: 0.890448
LB SCORE: TBD
SUBMISSION FLN: TBD
Comments: This is trained mainly to use for transfer learning
EXP_735 (LB: 0.793)
Training on old data with image size 352
, I am using weitts for transfer learning from the notebook EXP_730_352
, NB_EXP_730_352_UNFREEZE_P1
. Image were first cropped to remove all the black background using script TBD.
EXP_735.ipynb
MODEL: EfficientNet-B5
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 56
SZ: 352
VALID: NEW DATA
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
max_zoom(1.3),
p_lighting(0.5),
zoom_crop(scale=(1.02, 1.35), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(10, 1e-3, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
MODEL WEIGHTS: NB_EXP_735_UNFREEZE_P1
MODEL TRN_LOSS: 0.233254
MODEL VAL_LOSS: 0.332348
QUADR KAPPA: 0.893338
LB SCORE: TBD
SUBMISSION FLN: TBD
Comments: Looks good move to cv
[EXP_735-CV_0 - EXP_735-CV_4].ipynb
Using weights NB_EXP_735_UNFREEZE_P1
To train NEW DATA with 5 fold splits. <br/>
Set up for all CV experimetns:
MODEL: EfficientNet-B5
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 56
SZ: 352
VALID: NEW DATA CV SPLIT
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
max_zoom(1.3),
p_lighting(0.5),
zoom_crop(scale=(1.01, 1.35), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(15, 1e-3, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
Summary:
Notebook Name | Train Loss | Valid Loss | Quadratic Kappa | Weights |
---|---|---|---|---|
EXP_735-CV_0 | 0.250133 | 0.205121 | 0.920307 | NB_EXP_735_CV_0_UNFREEZE_P1 |
EXP_735-CV_1 | 0.135174 | 0.211053 | 0.921838 | NB_EXP_735_CV_1_UNFREEZE_P1 |
EXP_735-CV_2 | 0.176270 | 0.170685 | 0.932106 | NB_EXP_735_CV_2_UNFREEZE_P1 |
EXP_735-CV_3 | 0.230097 | 0.223343 | 0.915626 | NB_EXP_735_CV_3_UNFREEZE_P1 |
EXP_735-CV_4 | 0.146527 | 0.205450 | 0.931362 | NB_EXP_735_CV_4_UNFREEZE_P1 |
Submission (Average all the predictions)
LB SCORE: 0.793
SUBMISSION FLN: EXP_352_crop(version 25/25)
EXP_740 (LB: 0.821, PB: 0.926)
In this experiment I combine OLD DATA with NEW DATA and do StratifiedKFold
5 Fold CV. Before combining I remove in NEW DATA all the duplicates and confusing label images (see in notebooks function get_ign_list
). Moreover images are preprocessed using PROCCES.ipynb
. This processing helps to remove extra black baground and center the images. Training is done in 3 phases with graudela increasing image sizes - 224, 352, 448
Set up for all CV experimetns:
IMG SIZE 224
MODEL: EfficientNet-B5
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 128
SZ: 224
VALID: StratifiedKFold split of combined data
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
max_zoom(1.3),
p_lighting(0.5),
zoom_crop(scale=(1.01, 1.35), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(10, 1e-2/7, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
fit_one_cycle(5, 1e-2/7/5, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
Notebook Name | Train Loss | Valid Loss | Quadratic Kappa | Weights |
---|---|---|---|---|
EXP_740-CV_0 | 0.307050 | 0.342956 | 0.757189 | NB_EXP_740_CV_0_UNFREEZE_P2 |
EXP_740-CV_1 | 0.302008 | 0.337840 | 0.756192 | NB_EXP_740_CV_1_UNFREEZE_P2 |
EXP_740-CV_2 | 0.318744 | 0.368400 | 0.740174 | NB_EXP_740_CV_2_UNFREEZE_P2 |
EXP_740-CV_3 | 0.306437 | 0.330385 | 0.772315 | NB_EXP_740_CV_3_UNFREEZE_P2 |
EXP_740-CV_4 | 0.308271 | 0.344059 | 0.758115 | NB_EXP_740_CV_4_UNFREEZE_P2 |
IMG SIZE 352
MODEL: EfficientNet-B5
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 352
SZ: 52
VALID: StratifiedKFold split of combined data
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
max_zoom(1.3),
p_lighting(0.5),
zoom_crop(scale=(1.01, 1.35), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(5, 1e-3/8, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
Notebook Name | Train Loss | Valid Loss | Quadratic Kappa | Weights |
---|---|---|---|---|
EXP_740-CV_0 | 0.234084 | 0.252582 | 0.821898 | NB_EXP_740_CV_0_352_UNFREEZE_P1 |
EXP_740-CV_1 | 0.243329 | 0.245724 | 0.825637 | NB_EXP_740_CV_1_352_UNFREEZE_P1 |
EXP_740-CV_2 | 0.249529 | 0.262216 | 0.814094 | NB_EXP_740_CV_2_352_UNFREEZE_P1 |
EXP_740-CV_3 | 0.253743 | 0.242828 | 0.832840 | NB_EXP_740_CV_3_352_UNFREEZE_P1 |
EXP_740-CV_4 | 0.252761 | 0.249456 | 0.823078 | NB_EXP_740_CV_4_352_UNFREEZE_P1 |
IMG SIZE 448
MODEL: EfficientNet-B5
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 448
SZ: 32
VALID: StratifiedKFold split of combined data
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
max_zoom(1.3),
p_lighting(0.5),
zoom_crop(scale=(1.01, 1.35), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(5, 1e-3/4, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
Notebook Name | Train Loss | Valid Loss | Quadratic Kappa | Weights |
---|---|---|---|---|
EXP_740-CV_0 | 0.242496 | 0.246118 | 0.815219 | NB_EXP_740_CV_0_448_UNFREEZE_P1 |
EXP_740-CV_1 | 0.231280 | 0.231828 | 0.822380 | NB_EXP_740_CV_1_448_UNFREEZE_P1 |
EXP_740-CV_2 | 0.248360 | 0.249534 | 0.813643 | NB_EXP_740_CV_2_448_UNFREEZE_P1 |
EXP_740-CV_3 | 0.265476 | 0.231223 | 0.829990 | NB_EXP_740_CV_3_448_UNFREEZE_P1 |
EXP_740-CV_4 | 0.238991 | 0.235502 | 0.826658 | NB_EXP_740_CV_4_448_UNFREEZE_P1 |
CV SCORE: 0.821578
LB SCORE: 0.818
SUBMISSION FLN: EXP_740(version 32/32)
IMG SIZE 448
MODEL: EfficientNet-B5
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
SZ: 456
BS: 32
VALID: StratifiedKFold split of combined data
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
max_zoom(1.3),
p_lighting(0.5),
zoom_crop(scale=(1.01, 1.35), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(5, 1e-3/4, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
Notebook Name | Train Loss | Valid Loss | Quadratic Kappa | Weights |
---|---|---|---|---|
EXP_740-CV_0 | 0.232561 | 0.247312 | 0.813309 | NB_EXP_740_CV_0_448_UNFREEZE_P1_rs1 |
EXP_740-CV_1 | 0.212561 | 0.240302 | 0.816792 | NB_EXP_740_CV_1_448_UNFREEZE_P1_rs1 |
EXP_740-CV_2 | 0.219508 | 0.258105 | 0.805388 | NB_EXP_740_CV_2_448_UNFREEZE_P1_rs1 |
EXP_740-CV_3 | 0.251555 | 0.237465 | 0.822387 | NB_EXP_740_CV_3_448_UNFREEZE_P1_rs1 |
EXP_740-CV_4 | 0.235883 | 0.242834 | 0.819575 | NB_EXP_740_CV_4_448_UNFREEZE_P1_rs1 |
CV SCORE: 0.823
LB SCORE: 0.821
SUBMISSION FLN: XP_740_448_rs(version 53/53)
EXP_765 (LB: 0.816: PB: 0.927)
Exactly like EXP_740, except training is done in 2 phases with graudela increasing image sizes - 224, 380
with the model EfficientNet-B5
. I have used Lookahead with Radam as optimizers. See Notebooks for more details
Set up for all CV experimetns:
IMG SIZE 224
MODEL: EfficientNet-B4
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 128
SZ: 224
VALID: StratifiedKFold split of combined data
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
p_lighting(0.5),
zoom_crop(scale=(1.01, 1.45), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(20, 1e-3, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
Notebook Name | Train Loss | Valid Loss | Quadratic Kappa | Weights |
---|---|---|---|---|
EXP_740-CV_0 | 0.284535 | 0.349184 | 0.754262 | NB_EXP_765_CV_0_UNFREEZE_P1 |
EXP_740-CV_1 | 0.276863 | 0.350727 | 0.757114 | NB_EXP_765_CV_1_UNFREEZE_P1 |
EXP_740-CV_2 | 0.279066 | 0.361914 | 0.745415 | NB_EXP_765_CV_2_UNFREEZE_P1 |
EXP_740-CV_3 | 0.271024 | 0.332245 | 0.777068 | NB_EXP_765_CV_3_UNFREEZE_P1 |
EXP_740-CV_4 | 0.282613 | 0.351242 | 0.756870 | NB_EXP_765_CV_4_UNFREEZE_P1 |
IMG SIZE 380
MODEL: EfficientNet-B4
NUM_CLASSES: 1 (5 classes but I am treatign this as a regression problem)
BS: 380
SZ: 64
VALID: StratifiedKFold split of combined data
TFMS: [flip(p=0.5),
flip_vert(True),
max_rotate(360),
max_lighting(0.1),
p_lighting(0.5),
zoom_crop(scale=(1.01, 1.35), do_rand=True))]
NORMALIZE: IMAGENET
TRAINING: fit_one_cycle(5, 1e-3, wd=1e-2, div_factor=25, pct_start=0.3)-UNF
Notebook Name | Train Loss | Valid Loss | Quadratic Kappa | Weights |
---|---|---|---|---|
EXP_740-CV_0 | 0.209359 | 0.250411 | 0.823727 | NB_EXP_765_CV_0_380_UNFREEZE_P1 |
EXP_740-CV_1 | 0.219378 | 0.244317 | 0.827123 | NB_EXP_765_CV_1_380_UNFREEZE_P1 |
EXP_740-CV_2 | 0.213898 | 0.256796 | 0.822892 | NB_EXP_765_CV_2_380_UNFREEZE_P1 |
EXP_740-CV_3 | 0.213808 | 0.235958 | 0.841296 | NB_EXP_765_CV_3_380_UNFREEZE_P1 |
EXP_740-CV_4 | 0.228376 | 0.240436 | 0.837558 | NB_EXP_765_CV_4_380_UNFREEZE_P1 |
CV SCORE: 0.831
LB SCORE: 0.816
SUBMISSION FLN: EXP_740(version 32/32)