Awesome
Text2Seg v0.1
Jielu Zhang, Zhongliang Zhou, Gengchen Mai, Lan Mu, Mengxuan Hu, Sheng Li
Text2Seg is a pipeline that combined multiple Vision Foundation Models to perform semantic segmentation.
:fire: UPDATE:
2023/06/07
: Update the codebase to solve some known problems with GroundingDINO.
Installation
- Create an new conda environment
conda create --name text2seg python==3.8
conda activate text2seg
pip install chardet ftfy regex tqdm
mkdir Pretrained
-
Install Pytorch version that fit you driver(tested on pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3).
-
Install Segment Anything and download weights:
pip install git+https://github.com/facebookresearch/segment-anything.git
cd Pretrained
wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
cd ../
- Install Grounding DINO
git clone https://github.com/IDEA-Research/GroundingDINO.git
cd GroundingDINO
pip3 install -q -e .
cd ..
cd Pretrained
wget -q https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth
cd ../
- Download CLIP Surgery repository
git clone https://github.com/xmed-lab/CLIP_Surgery.git
- Install CLIP repository
pip install git+https://github.com/openai/CLIP.git
<a name="GettingStarted"></a>Getting Started
You can test the Text2Seg on demo.ipynb notebook.
Citing Text2Seg
If you find Text2Seg useful, please use the following BibTeX entry.
@article{zhang2023text2seg,
title={Text2Seg: Remote Sensing Image Semantic Segmentation via Text-Guided Visual Foundation Models},
author={Zhang, Jielu and Zhou, Zhongliang and Mai, Gengchen and Mu, Lan and Hu, Mengxuan and Li, Sheng},
journal={arXiv preprint arXiv:2304.10597},
year={2023}
}