Awesome
SPANet Official (ongoing)
<p align="left"> <a href="https://arxiv.org/abs/2308.11568" alt="arXiv"> <img src="https://img.shields.io/badge/arXiv-2308.11568-b31b1b.svg?style=flat" /></a> <a href="https://openaccess.thecvf.com/content/ICCV2023/html/Yun_SPANet_Frequency-balancing_Token_Mixer_using_Spectral_Pooling_Aggregation_Modulation_ICCV_2023_paper.html" alt="Colab"> <img src="https://img.shields.io/badge/ICCV_2023-open_access-blue" /></a> <a href="https://doranlyong.github.io/projects/spanet/"> <img src="https://img.shields.io/badge/project-page-blue"></a> </p>💬 This repo is the official implementation of:
- ICCV2023: SPANet: Frequency-balancing Token Mixer using Spectral Pooling Aggregation Modulation
🤖 It currently includes code and models for the following tasks:
📖 Introduction
SPANet is a new backbone network which can handle the balance problem of high- and low-frequency components for optimal feature representations.
Main results on ImageNet-1K
Please see image_classification for more details.
Model | Pretrain | Resolution | Top-1 | #Param. | FLOPs |
---|---|---|---|---|---|
SPANet-S | ImageNet-1K | 224x224 | 83.1 | 28.7M | 4.6G |
SPANet-M | ImageNet-1K | 224x224 | 83.5 | 41.8M | 6.8G |
SPANet-MX | ImageNet-1K | 224x224 | 83.8 | 54.9M | 9.0G |
SPANet-B | ImageNet-1K | 224x224 | 84.0 | 75.9M | 12.0G |
SPANet-BX | ImageNet-1K | 224x224 | 84.4 | 99.8 M | 15.8G |
Main results on COCO object detection and instance segmentation
Please see object_detection for more details.
RetinaNet 1x
Backbone | Lr Schd | box mAP | #params |
---|---|---|---|
SPANet-S | 1x | 43.3 | 38M |
SPANet-M | 1x | 44.0 | 51M |
Mask R-CNN 1x
Backbone | Lr Schd | box mAP | mask mAP | #params |
---|---|---|---|---|
SPANet-S | 1x | 44.7 | 40.6 | 48M |
SPANet-M | 1x | 45.2 | 41.0 | 61M |
Main results on ADE20K semantice segmentation
Please see semantic_segmentation for more details.
Semantic FPN
Backbone | Lr Schd | mIoU | #params | FLOPs |
---|---|---|---|---|
SPANet-S | 80K | 45.4 | 32M | 46G |
SPANet-M | 80K | 46.2 | 45M | 57G |
⭐ Cite SPANet
If you find this repository useful, please give us stars and use the following BibTeX entry for citation.
@inproceedings{yun2023spanet,
title={SPANet: Frequency-balancing Token Mixer using Spectral Pooling Aggregation Modulation},
author={Yun, Guhnoo and Yoo, Juhan and Kim, Kijung and Lee, Jeongho and Kim, Dong Hwan},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={6113--6124},
year={2023}
}
License
This project is released under the MIT license. Please see the LICENSE file for more information.