Awesome
RRPN_Faster_RCNN_Tensorflow
Abstract
This is a tensorflow re-implementation of RRPN: Arbitrary-Oriented Scene Text Detection via Rotation Proposals.
It should be noted that we did not re-implementate exactly as the paper and just adopted its idea.
This project is based on Faster-RCNN, and completed by YangXue and YangJirui.
DOTA test results
Comparison
Part of the results are from DOTA paper.
Task1 - Oriented Leaderboard
Approaches | mAP | PL | BD | BR | GTF | SV | LV | SH | TC | BC | ST | SBF | RA | HA | SP | HC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SSD | 10.59 | 39.83 | 9.09 | 0.64 | 13.18 | 0.26 | 0.39 | 1.11 | 16.24 | 27.57 | 9.23 | 27.16 | 9.09 | 3.03 | 1.05 | 1.01 |
YOLOv2 | 21.39 | 39.57 | 20.29 | 36.58 | 23.42 | 8.85 | 2.09 | 4.82 | 44.34 | 38.35 | 34.65 | 16.02 | 37.62 | 47.23 | 25.5 | 7.45 |
R-FCN | 26.79 | 37.8 | 38.21 | 3.64 | 37.26 | 6.74 | 2.6 | 5.59 | 22.85 | 46.93 | 66.04 | 33.37 | 47.15 | 10.6 | 25.19 | 17.96 |
FR-H | 36.29 | 47.16 | 61 | 9.8 | 51.74 | 14.87 | 12.8 | 6.88 | 56.26 | 59.97 | 57.32 | 47.83 | 48.7 | 8.23 | 37.25 | 23.05 |
FR-O | 52.93 | 79.09 | 69.12 | 17.17 | 63.49 | 34.2 | 37.16 | 36.2 | 89.19 | 69.6 | 58.96 | 49.4 | 52.52 | 46.69 | 44.8 | 46.3 |
R<sup>2</sup>CNN | 60.67 | 80.94 | 65.75 | 35.34 | 67.44 | 59.92 | 50.91 | 55.81 | 90.67 | 66.92 | 72.39 | 55.06 | 52.23 | 55.14 | 53.35 | 48.22 |
RRPN | 61.01 | 88.52 | 71.20 | 31.66 | 59.30 | 51.85 | 56.19 | 57.25 | 90.81 | 72.84 | 67.38 | 56.69 | 52.84 | 53.08 | 51.94 | 53.58 |
ICN | 68.20 | 81.40 | 74.30 | 47.70 | 70.30 | 64.90 | 67.80 | 70.00 | 90.80 | 79.10 | 78.20 | 53.60 | 62.90 | 67.00 | 64.20 | 50.20 |
R<sup>2</sup>CNN++ | 71.16 | 89.66 | 81.22 | 45.50 | 75.10 | 68.27 | 60.17 | 66.83 | 90.90 | 80.69 | 86.15 | 64.05 | 63.48 | 65.34 | 68.01 | 62.05 |
Requirements
1、tensorflow >= 1.2
2、cuda8.0
3、python2.7 (anaconda2 recommend)
4、opencv(cv2)
Download Model
1、please download resnet50_v1、resnet101_v1 pre-trained models on Imagenet, put it to data/pretrained_weights.
2、please download mobilenet_v2 pre-trained model on Imagenet, put it to data/pretrained_weights/mobilenet.
3、please download trained model by this project, put it to output/trained_weights.
Data Prepare
1、please download DOTA
2、crop data, reference:
cd $PATH_ROOT/data/io/DOTA
python train_crop.py
python val_crop.py
3、data format
├── VOCdevkit
│ ├── VOCdevkit_train
│ ├── Annotation
│ ├── JPEGImages
│ ├── VOCdevkit_test
│ ├── Annotation
│ ├── JPEGImages
Compile
cd $PATH_ROOT/libs/box_utils/
python setup.py build_ext --inplace
cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace
Demo
Select a configuration file in the folder (libs/configs/) and copy its contents into cfgs.py, then download the corresponding weights.
python demo.py --src_folder='/PATH/TO/DOTA/IMAGES_ORIGINAL/'
--image_ext='.png'
--des_folder='/PATH/TO/SAVE/RESULTS/'
--save_res=False
--gpu='0'
Eval
python eval.py --img_dir='/PATH/TO/DOTA/IMAGES/'
--image_ext='.png'
--test_annotation_path='/PATH/TO/TEST/ANNOTATION/'
--gpu='0'
Inference
python inference.py --data_dir='/PATH/TO/DOTA/IMAGES_CROP/'
--gpu='0'
Train
1、If you want to train your own data, please note:
(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/lable_dict.py
(3) Add data_name to line 75 of $PATH_ROOT/data/io/read_tfrecord.py
2、make tfrecord
cd $PATH_ROOT/data/io/
python convert_data_to_tfrecord.py --VOC_dir='/PATH/TO/VOCdevkit/VOCdevkit_train/'
--xml_dir='Annotation'
--image_dir='JPEGImages'
--save_name='train'
--img_format='.png'
--dataset='DOTA'
3、train
cd $PATH_ROOT/tools
python train.py
Tensorboard
cd $PATH_ROOT/output/summary
tensorboard --logdir=.
Citation
Some relevant achievements based on this code.
@article{[yang2018position](https://ieeexplore.ieee.org/document/8464244),
title={Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multitask Rotation Region Convolutional Neural Network},
author={Yang, Xue and Sun, Hao and Sun, Xian and Yan, Menglong and Guo, Zhi and Fu, Kun},
journal={IEEE Access},
volume={6},
pages={50839-50849},
year={2018},
publisher={IEEE}
}
@article{[yang2018r-dfpn](http://www.mdpi.com/2072-4292/10/1/132),
title={Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks},
author={Yang, Xue and Sun, Hao and Fu, Kun and Yang, Jirui and Sun, Xian and Yan, Menglong and Guo, Zhi},
journal={Remote Sensing},
volume={10},
number={1},
pages={132},
year={2018},
publisher={Multidisciplinary Digital Publishing Institute}
}