Home

Awesome

Salient objects in clutter (TPAMI2022)

Authors: Deng-Ping Fan, Jing Zhang, Gang Xu, Ming-Ming Cheng, Ling Shao.

1. Preface

2. Scope

Salient object detection (SOD) originated from the task of fixation prediction (FP), switching attention regions for accurate object-level regions. Current algorithms have been developed for 2D images of limited resolution (width or height $<$ 500 pixels), high-resolution (i.e., 1080p, 4K) and even remote sensing data. According to the supervision strategy, there are five types of SOD models: fully supervised, semi-supervised, weakly supervised, unsupervised, and self-supervised.

Recently, several interesting extensions of SOD have also been introduced, such as salient instance detection (SID), salient object subitizing (SOS), and saliency ranking. A taxonomy of the saliency detection task is shown below. Different from previous SOD reviews, we mainly focus on 2D salient object detection in a fully supervised manner. We highlight the scope of this study in gray. For other closely related 3D/4D SOD tasks, we refer readers to recent survey and benchmarking works such as RGB-D SOD, Event-RGB SOD (ERSOD), Light Field SOD,
Co-SOD, 360° Video SOD, and Video SOD.

avatar Fig.1 Taxonomy of the saliency detection task. We highlight the scope of this study in gray.

3. Evaluation Code

Link: https://github.com/mczhuge/SOCToolbox Note: If you want to list your results on our web, please send your name, model name, paper title to us. Important Tips: Some works use the so-called same F-measure metric, while they do not explicitly describe which statistic (e.g., mean or max) they used, easily resulting in unfair comparison and inconsistent performance. Meanwhile, the different threshold strategies in F-measure (e.g., 255 varied thresholds, adaptive saliency threshold, and self-adaptive threshold) will result in different performance. Fairly comparing RGB-D based SOD models by extensively evaluating them with same metrics on standard benchmarks is highly desired. So you need to download all of our re-organized datasets, saliency maps of each model and then evaluate your model.

4. SOC Dataset

avatar

Fig.2 Examples from our new SOCdataset,including non-salient (first row) and salient object images (rows 2 to 4). For salient object images, an instance-level ground-truth map (different color), object attributes (Attr) and category labels are provided.

avatar

Fig.3 (a) Number of annotated instances per category in our SOC dataset. (b, c) Global and local color contrast statistics, respectively. (d) A set of saliency maps from our dataset and their overlay map. (e) Location distribution of the salient objects in SOC. (f) Distribution of instance sizes in the SOCand ILSO datasets. (g) Visual examples of attributes. Best view on screen and zoomed-in for details.

NameSOC-TrainSOC-ValSOC-TestTotalLink
Salient Object (Sal)1,8006006003,000
Non-Salient Object (NonSal)1,8006006003,000
Total3,6001,2001,2006,000Baidu/Google (730.2MB)
Baidu/Google (441.32MB)Baidu/Google (146.56MB)Baidu/Google (141.86MB)

Object-level Ground-Truth of the SOC Test Set released. Baidu

Instance-level Ground-Truth of the SOC Test Set released. Baidu

Note that the Test Set only contains images and without ground truth. We will create the SOC Benchmark website soon and you can upload your result to obtain the final score in our website. Also, you can use the Validation Set as Test Set first. Note that the image file of COCO_train2014_000000080168.PNG should be changed with new file name COCO_train2014_000000080168.png to prevent some errors during training your model.

avatar Download link: Baidu.

5. 2D RGB Saliency Detection Models

Note that: If the model used S-measure/E-measure will be marked with <strong>bold</strong>.

Traditional Methods (Updated: 2022-04-04)

avatar

Download link: Google.

No.Name.Pub.YearTitleLinks
01ItTPAMI1998A Model of Saliency-Based Visual Attention for Rapid Scene Analysis[Paper]/[Code]
02FGACMMM2003Contrast-based image attention analysis by using fuzzy growing[Paper]/[Code]
03RSAACMMM2005Robust subspace analysis for detecting visual attention regions in images[Paper]/[Code]
04AIMNeurIPS2005Saliency Based on Information Maximization[Paper]/[Code]
05REICME2006Region enhanced scale-invariant saliency detection[Paper]/[Code]
06SRCVPR2007Saliency Detection A Spectral Residual Approach[Paper]/[Code]
07GBNeurIPS2007Graph-Based Visual Saliency[Paper]/[Code]
08RUTMM2007A rule based technique for extraction of visual attention regions based on real-time clustering[Paper]/[Code]
09SUNJOV2008SUN: A bayesian framework for saliency using natural statistics[Paper]/[Code]
10ACICVS2008Salient region detection and segmentation[Paper]/[Code]
11FTCVPR2009Frequency-tuned Salient Region Detection[Paper]/[Code]
12ICCICCV2009Image saliency by isocentric curvedness and color[Paper]/[Code]
13EDSPR2009A simple method for detecting salient regions[Paper]/[Code]
14CACVPR2010Context-Aware Saliency Detection[Paper]/[Code]
15SEGECCV2010Segmenting Salient Objects from Images and Videos[Paper]/[Code]
16MSSSICIP2010Saliency Detection using Maximum Symmetric Surround[Paper]/[Code]
17CSMACMMM2010Automatic interesting object extraction from images using complementary saliency maps[Paper]/[Code]
18HC,RCCVPR2011Global Contrast based Salient Region Detection[Paper]/[Code]
19SVOICCV2011Fusing generic objectness and visual saliency for salient object detection[Paper]/[Code]
20CSDICCV2011Center-surround divergence of feature statistics for salient object detection[Paper]/[Code]
21CCICCV2011Salient object detection using concavity context[Paper]/[Code]
22CBBMVC2011Automatic Salient Object Segmentation Based on Context and Shape Prior[Paper]/[Code]
23SFCVPR2012Saliency Filters Contrast Based Filtering for Salient Region Detection[Paper]/[Code]
24LRCVPR2012A Unified Approach to Salient Object Detection via Low Rank Matrix Recovery[Paper]/[Code]
25GSECCV2012Geodesic saliency using background priors[Paper]/[Code]
26BSFICIP2012Saliency Detection Based on Integration of Boundary and Soft-Segmentation[Paper]/[Code]
27GC,GUICCV2013Efficient Salient Region Detection with Soft Image Abstraction[Paper]/[Code]
28MRCVPR2013Saliency Detection via Graph-Based Manifold Ranking[Paper]/[Code]
29MCICCV2013Saliency Detection via Absorbing Markov Chain[Paper]/[Code]
30DRFICVPR2013Salient Object Detection A Discriminative Regional Feature Integration Approach[Paper]/[Code]
31DSRICCV2013Saliency Detection via Dense and Sparse Reconstruction[Paper]/[Code]
32PISACVPR2013Pisa: Pixelwise image saliency by aggregating complementary appearance contrast measures with spatial priors[Paper]/[Code]
33CRFCVPR2013Saliency aggregation: A data-driven approach[Paper]/[Code]
34HSCVPR2013Hierarchical Saliency Detection[Paper]/[Code]
35PCACVPR2013What Makes a Patch Distinct[Paper]/[Code]
36STDCVPR2013Statistical textural distinctiveness for salient region detection in natural images[Paper]/[Code]
38SUBCVPR2013Submodular salient region detection[Paper]/[Code]
39UFOICCV2013Salient Region Detection by UFO Uniqueness, Focusness and Objectness[Paper]/[Code]
40CHMICCV2013Contextual hypergraph modeling for salient object detection[Paper]/[Code]
41COVJOV2013Visual saliency estimation by nonlinearly integrating features using region covariances[Paper]/[Code]
42CIOICCV2013Category-independent object-level saliency detection[Paper]/[Code]
43GRSPL2013Graph-Regularized Saliency Detection With Convex-Hull-Based Center Prior[Paper]/[Code]
44SLMRBMVC2013Segmentation driven lowrank matrix recovery for saliency detection[Paper]/[Code]
45LSSCTIP2013Bayesian Saliency via Low and Mid Level Cues[Paper]/[Code]
46LSMDAAAI2013Salient object detection via low-rank and structured sparse matrix decomposition[Paper]/[Code]
47HDCTCVPR2014Salient Region Detection via High-Dimensional Color Transform[Paper]/[Code]
48PDECVPR2014Adaptive partial differential equation learning for visual saliency detection[Paper]/[Code]
49RBDCVPR2014Saliency Optimization from Robust Background Detection[Paper]/[Code]
50MSSSPL2014Saliency Detection with Multi-Scale Superpixels[Paper]/[Code]
51GPICCV2015Generic Promotion of Diffusion-Based Salient Object Detection[Paper]/[Code]
52MBSICCV2015Minimum Barrier Salient Object Detection at 80 FPS[Paper]/[Code]
53WSCCVPR2015A Weighted Sparse Coding Framework for Saliency Detection[Paper]/[Code]
54RRWCVPR2015Robust saliency detection via regularized random walks ranking[Paper]/[Code]
55TLLTCVPR2015Saliency Propagation from Simple to Difficult[Paper]/[Code]
56BLCVPR2015Salient Object Detection via Bootstrap Learning[Paper]/[Code]
57BSCACVPR2015Saliency Detection via Cellular Automata[Paper]/[Code]
58GLCPR2015Salient Object Detection via Global and Local Cues[Paper]/[Code]
59LPSTIP2015Inner and Inter Label Propagation Salient Object Detection in the Wild[Paper]/[Code]
60MAPMTIP2015Saliency Region Detection based on Markov Absorption Probabilities[Paper]/[Code]
61NCSTIP2015Normalized cut-based saliency detection by adaptive multi-level region merging[Paper]/[Code]
62BFSNC2015Saliency Detection via Background and Foreground Seed Selection[Paper]/[Code]
63UFTMM2016A Universal Framework for Salient Object Detection[Paper]/[Code]
64MSTCVPR2016Real-Time Salient Object Detection with a Minimum Spanning Tree[Paper]/[Code]
65PMECCV2016Pattern Mining Saliency[Paper]/[Code]
66DSPPR2016Discriminative saliency propagation with sink points[Paper]/[Code]
67EBMIJCAI2016Saliency Transfer: An Example-Based Method for Salient Object Detection[Paper]/[Code]
68AWCNeurocomputing2016Robust manifold-preserving diffusion-based saliency detection by adaptive weight construction[Paper]/[Code]
69MRMFTNNLS2016Manifold Ranking-Based Matrix Factorization for Saliency Detection[Paper]/[Code]
70SBCRFNeurocomputing2017A superpixel-based CRF saliency detection approach[Paper]/[Code]
71WLRRSPL2017Salient Object Detection via Weighted Low Rank Matrix Recovery[Paper]/[Code]
72MILTIP2017Salient Object Detection via Multiple Instance Learning[Paper]/[Code]
73SMDPAMI2017Salient Object Detection via Structured Matrix Decomposition[Paper]/[Code]
74MDCTIP2017300-FPS Salient Object Detection via Minimum Directional Contrast[Paper]/[Code]
75SSNC2017Spectral Salient Object Detection[Paper]/[Code]
76IFCTMM2017Iterative Feedback Control Based Salient Object Segmentation[Paper]/[Code]
77CCRFTMM2017Saliency Detection by Fully Learning A Continuous Conditional Random Field[Paper]/[Code]
78ELERCVPR2017What is and what is not a salient object? learning salient object detector by ensembling linear exemplar regressors[Paper]/[Code]
79DIMDPR2017Diversity Induced Matrix Decomposition Model for salient object detection[Paper]/[Code]
80ProSNC2018Salient Object Detection via Proposal Selection[Paper]/[Code]
81WMRNC2018Saliency detection via affinity graph learning and weighted manifold ranking[Paper]/[Code]
82RCRRTIP2018Reversion correction and regularized random walk ranking for saliency detection[Paper]/[Code]
83JLSETIP2018Exemplar-aided Salient Object Detection via Joint Latent Space Embedding[Paper]/[Code]
84WFDPR2018Water flow driven salient object detection at 180 fps[Paper]/[Code]
85FBQAccess2018Hypergraph Optimization for Salient Region Detection Based on Foreground and Background Queries[Paper]/[Code]
86FTOETMM2019Salient Object Detection via Fuzzy Theory and Object-level Enhancement[Paper]/[Code]
87KSRTIP2019Visual Saliency Detection via Kernelized Subspace Ranking with Active Learning[Paper]/[Code]
88FCBTIP2019Exploiting Color Volume and Color Difference for Salient Region Detection[Paper]/[Code]
89TSGTCSVT2019Salient Object Detection Via Two-Stage Graphs[Paper]/[Code]
90DSCTCSVT2019Direction Selective Contour Detection for Salient Objects[Paper]/[Code]
91AIGCTCSVT2019Adaptive Irregular Graph Construction Based Salient Object Detection[Paper]/[Code]
92NIOTNNLS2019Semisupervised Learning Based on a Novel Iterative Optimization Model for Saliency Detection[Paper]/[Code]
93MSRTIP201950 FPS Object-Level Saliency Detection via Maximally Stable Region[Paper]/[Code]
94MSGCTMM2019Saliency Detection via Multi-Scale Global Cues[Paper]/[Code]
95LRRTIP2019Local Regression Ranking for Saliency Detection[Paper]/[Code]

Deep Learning Methods (Updated: 2022-04-05)

avatar

Download link: Google.

No.Name.Pub.YearTitleLinks
01SuperCNNIJCV2015A superpixelwise convolutional neural network for salient object detectionPaper/[Code]
02LEGSCVPR2015Deep networks for saliency detection via local estimation and global searchPaper/Code
03MCCVPR2015Saliency detection by multi-context deep learningPaper/[Code]
04MDFCVPR2015Visual saliency based on multiscale deep featuresPaper/[Code]
05DISCTNNLS2016DISC: Deep image saliency computing via progressive representation learningPaper/[Code]
06DSLTCSVT2016Dense and Sparse Labeling with Multi-Dimensional Features for Saliency DetectionPaper/[Code]
07DSTIP2016DeepSaliency: Multi-task deep neural network model for salient object detectionPaper/[Code]
08SSDECCV2016A shape-based approach for salient object detection using deep learningPaper/[Code]
09CRPSDECCV2016Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNsPaper/[Code]
10RFCNECCV2016Saliency detection with recurrent fully convolutional networksPaper/Code
11RFCNTPAMI2019Salient object detection with recurrent fully convolutional networksPaper/[Code]
12MAPCVPR2016Unconstrained salient object detection via proposal subset optimizationPaper/[Code]
13SUCVPR2016Saliency unified: A deep architecture for simultaneous eye fixation prediction and salient object segmentationPaper/[Code]
14RACDNNCVPR2016Recurrent attentional networks for saliency detectionPaper/[Code]
15ELDCVPR2016Deep Saliency with Encoded Low level Distance Map and High Level FeaturesPaper/Code
16DHSCVPR2016DHSNet: Deep Hierarchical Saliency Network for Salient Object DetectionPaper/Code
17DCLCVPR2016Deep Contrast Learning for Salient Object DetectionPaper/[Code]
18DSRCNNACMMM2016Deeply-Supervised Recurrent Convolutional Neural Network for Saliency DetectionPaper/[Code]
19MSCNetACMMM2017Multi-Scale Cascade Network for Salient Object DetectionPaper/[Code]
20CARBMVC2017Salient object detection using a context-aware refinement networkPaper/[Code]
21DLSCVPR2017Deep Level Sets for Salient Object DetectionPaper/[Code]
22MSRNetCVPR2017Instance-Level Salient Object SegmentationPaper/Code
23WSSCVPR2017Learning to Detect Salient Objects with Image-level SupervisionPaper/Code
24SRMICCV2017A stagewise refinement model for detecting salient objects in imagesPaper/Code
25NLDFCVPR2017Non-Local Deep Features for Salient Object DetectionPaper/Code
26DSSCVPR/TPAMI2017/2019Deeply Supervised Salient Object Detection with Short ConnectionsPaper/Code
27SalGANCVPR2017SalGAN: visual saliency prediction with adversarial networksPaper/Code
28FSNICCV2017Look, perceive and segment: Finding the salient objects in images via two-stream fixation-semantic cnnsPaper/[Code]
29DSOSICCV2017Delving into Salient Object Subitizing and DetectionPaper/[Code]
30SVFICCV2017Supervision by Fusion: Towards Unsupervised Learning of Deep Salient Object DetectorPaper/Code
31UCFICCV2017Learning Uncertain Convolutional Features for Accurate Saliency DetectionPaper/Code
32AMUICCV2017Amulet: Aggregating Multi-level Convolutional Features for Salient Object DetectionPaper/Code
33UGATIP2018An Unsupervised Game-Theoretic Approach to Saliency DetectionPaper/Code
34RefinetTMM2018Refinet A deep segmentation assisted refinement network for salient object detectionPaper/Results (psw: iziq)
35MSEDNeurocomputing2018Multi-scale deep encoder-decoder network for salient object detectionPaper/[Code]
36EARNetT-Cybernetics2018Embedding Attention and Residual Network for Accurate Salient Object DetectionPaper/[Code]
37LFCST-Cybernetics2018Semi-Supervised Salient Object Detection Using a Linear Feedback Control System ModelPaper/[Code]
38LICNNAAAI2018Lateral inhibition-inspired convolutional neural network for visual attention and saliency detectionPaper/[Code]
39ASMOAAAI2018Weakly supervised salient object detection using image labelsPaper/[Code]
40RADFAAAI2018Recurrently aggregating deep features for salient object detectionPaper/[Code]
41R3NetIJCAI2018R3net: Recurrent residual refinement network for saliency detectionPaper/[Code]
42LFRIJCAI2018Salient Object Detection by Lossless Feature ReflectionPaper/Code
43C2SNetECCV2018Contour Knowledge Transfer for Salient Object DetectionPaper/Code
44RASECCV2018Reverse Attention for Salient Object DetectionPaper/Code
45LPSNetCVPR2018Learning to promote saliency detectorsPaper/Code
46RSDNetCVPR2018Revisiting salient object detection: Simultaneous detection, ranking, and subitizing of multiple salient objectsPaper/Code
47DUSCVPR2018Deep unsupervised saliency detection: A multiple noisy labeling perspectivePaper/Code
48ASNetCVPR2018Salient Object Detection Driven by Fixation PredictionPaper/Code
49ASNetTPAMI2019Inferring Salient Objects from Human FixationsPaper/Code
50BDMPMCVPR2018A Bi-Directional Message Passing Model for Salient Object DetectionPaper/Code
51DGRLCVPR2018Detect Globally, Refine Locally: A Novel Approach to Saliency DetectionPaper/Code
52PiCANetCVPR2018PiCANet: Learning Pixel-wise Contextual Attention for Saliency DetectionPaper/Code
53PAGRCVPR2018Progressive Attention Guided Recurrent Network for Salient Object DetectionPaper/Code
54DANetJSTSP2019Distortion-adaptive Salient Object Detection in 360∘ Omnidirectional ImagesPaper/[Code]
55RSRTPAMI2019Relative Saliency and Ranking: Models, Metrics, Data and BenchmarksPaper/[Code]
56Hyperfusion-NetPR2019Hyperfusion-Net: Hyper-densely reflective feature fusion for salient object detectionPaper/[Code]
57DeepsideNeurocomputing2019Deepside: A General Deep Framework for Salient Object DetectionPaper/[Code]
58LVNetTGRS2019Nested Network with Two-Stream Pyramid for Salient Object Detection in Optical Remote Sensing ImagesPaper/[Code]
59LFRWSTIP2019Salient Object Detection with Lossless Feature Reflection and Weighted Structural LossPaper/[Code]
60FBGTIP2019Focal Boundary Guided Salient Object DetectionPaper/[Code]
61ConnNetTIP2019ConnNet: A long-range relation-aware pixel-connectivity network for salient segmentationPaper/[Code]
62CIGTIP2019Deep Salient Object Detection with Contextual Information GuidancePaper/[Code]
63SPATIP2019Semantic Prior Analysis for Salient Object DetectionPaper/[Code]
64CDMGTIP2019Weakly Supervised Salient Object Detection by Learning A Classifier-Driven Map GeneratorPaper/[Code]
65CCALTMM2019Salient Object Detectioin Using Cascaded Convolutional Neural Networks and Adversarial LearningPaper/[Code]
66SIATMM2019Saliency Integration An Arbitrator ModelPaper/[Code]
67MIJRTCSVT2019Salient Object Detection via Multiple Instance Joint Re-LearningPaper/[Code]
68AADFTCSVT2019Aggregating Attentional Dilated Features for Salient ObjectPaper/Code
69ROSAT-Cybernetics2019ROSA: Robust Salient Object Detection against Adversarial AttacksPaper/Code
70SSNetTPAMI2019Synthesizing Supervision for Learning Deep Saliency Network without Human AnnotationPaper/[Code]
71DEFAAAI2019Deep Embedding Features for Salient Object DetectionPaper/Code
72SuperVAEAAAI2019Supervae: Superpixelwise variational autoencoder for salient object detectionPaper/[Code]
73CapSalCVPR2019CapSal: Leveraging Captioning to Boost Semantics for Salient Object DetectionPaper/Code
74BASNetCVPR2019BASNet: Boundary Aware Salient Object DetectionPaper/Code
75PFANetCVPR2019Pyramid Feature Attention Network for Saliency detectionPaper/Code
76MWSCVPR2019Multi-source weak supervision for saliency detectionPaper/Code
77ICNetCVPR2019An Iterative and Cooperative Top-down and Bottom-up Inference Network for Salient Object DetectionPaper/Code
78PAGE-NetCVPR2019Salient Object Detection With Pyramid Attention and Salient EdgesPaper/Code
79CPDCVPR2019Cascaded Partial Decoder for Accurate and Fast Salient Object DetectionPaper/Code
80MLMSNetCVPR2019A Mutual Learning Method for Salient Object Detection with intertwined Multi-SupervisionPaper/Code
81AFNetCVPR2019Attentive Feedback Network for Boundary-aware Salient Object DetectionPaper/Code
82DPORICCV2019Employing Deep Part-Object Relationships for Salient Object DetectionPaper/Code
83SIBAICCV2019Selectivity or Invariance: Boundary-aware Salient Object DetectionPaper/Code
84JDFICCV2019Structured Modeling of Joint Deep Feature and Prediction Refinement for Salient Object DetectionPaper/Code
85FLossICCV2019Optimizing the F-measure for Threshold-free Salient Object DetectionPaper/Code
86HRSODICCV2019Towards High-Resolution Salient Object DetectionPaper/Code
87EGNetICCV2019EGNet: Edge Guidance Network for Salient Object DetectionPaper/Code
88SCRNICCV2019Stacked Cross Refinement Network for Salient Object DetectionPaper/Code
89PoolNetICCV2019A Simple Pooling-Based Design for Real-Time Salient Object DetectionPaper/Code
90DeepUSPSNeurIPS2019Deep Robust Unsupervised Saliency Prediction With Self-SupervisionPaper/Code
91EAIICLR2019Efficient Saliency Maps for Explainable AIPaper/[Code]
92DFITIP2020Dynamic Feature Integration for Simultaneous Detection of Salient Object, Edge and SkeletonPaper/Code
93CALossTIP2020Contour-aware loss: Boundary-aware learning for salient object segmentationPaper/[Code]
94EGNLTCSVT2020Edge-guided non-local fully convolutional network for salient object detectionPaper/[Code]
95CAGNetPR2020CAGNet: Content-aware guidance for salient object detectionPaper/Code
96FastSaliencyT-Cybernetics2020Lightweight Salient Object Detection via Hierarchical Visual Perception LearningPaper/Code
97PFPNetAAAI2020Progressive Feature Polishing Network for Salient Object DetectionPaper/Code
98F3NetAAAI2020F3Net: Fusion, Feedback and Focus for Salient Object DetectionPaper/Code
99GCPANetAAAI2020Global Context-Aware Progressive Aggregation Network for Salient Object DetectionPaper/Code
100ADASODAAAI2020Multi-spectral Salient Object Detection by Adversarial Domain AdaptationPaper/Code
101MTSAAAAI2020Multi-Type Self-Attention Guided Degraded Saliency DetectionPaper/Code
102ScrSODCVPR2020Weakly-Supervised Salient Object Detection via Scribble AnnotationsPaper/Code
103MINetCVPR2020Multi-scale Interactive Network for Salient Object DetectionPaper/Code
104ITSDCVPR2020Interactive Two-Stream Decoder for Accurate and Fast Saliency DetectionPaper/Code
105LDFCVPR2020Label Decoupling Framework for Salient Object DetectionPaper/Code
106Sal100KECCV2020Highly Efficient Salient Object Detection with 100K ParametersPaper/Code
107NSODECCV2020n-Reference Transfer Learning for Saliency PredictionPaper/Code
108ABP-SaliencyECCV2020Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating Back-Propagation for Saliency DetectionPaper/Code
109GateNetECCV2020Suppress and Balance: A Simple Gated Network for Salient Object DetectionPaper/Code
110FewCSODNeurIPS2020Few-Cost Salient Object Detection with Adversarial-Paced LearningPaper/Code
111DNAT-Cybernetics2021DNA: Deeply supervised nonlinear aggregation for salient object detectionPaper/Code
112DAFNetTIP2021Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing ImagesPaper/Code
113WSSOSTCSVT2021Weakly-Supervised Saliency Detection via Salient Object SubitizingPaper/Code
114DACNetTMM2021Dense Attention-guided Cascaded Network for Salient Object Detection of Strip Steel Surface DefectsPaper/Code
115DCNTIP2021Decomposition and Completion Network for Salient Object DetectionPaper/Code
116PurNetTIP2021Salient Object Detection with Purificatory Mechanism and Structural Similarity LossPaper/Code
117PSGLossTIP2021Progressive Self-Guided Loss for Salient Object DetectionPaper/Code
118SAMNetTIP2021SAMNet: Stereoscopically Attentive Multi-scale Network for Lightweight Salient Object DetectionPaper/Code
119LSCAAAI2021Structure-Consistent Weakly Supervised Salient Object Detection with Local Saliency CoherencePaper/Code
120PFSNetAAAI2021Pyramidal Feature Shrinking for Salient Object DetectionPaper/Code
121LGSLAAAI2021Locate Globally, Segment Locally: A Progressive Architecture with Knowledge Review Network for Salient Object DetectionPaper/Code
122RATMAAAI2021Generating Diversified Comments via Reader-Aware Topic Modeling and Saliency DetectionPaper/Code
123MeshSaliencyCVPR2021Mesh Saliency: An Independent Perceptual Measure or A Derivative of Image Saliency?Paper/Code
124BBESODCVPR2021Black-Box Explanation of Object Detectors via Saliency MapsPaper/Code
125CAMERASCVPR2021CAMERAS: Enhanced Resolution and Sanity Preserving Class Activation Mapping for Image SaliencyPaper/Code
126SGITCVPR2021Saliency-Guided Image TranslationPaper/Code
127Auto-MSFNetACMMM2021Auto-MSFNet: Search Multi-scale Fusion Network for Salient Object DetectionPaper/Code
128CTDNetACMMM2021Complementary Trilateral Decoder for Fast and Accurate Salient Object DetectionPaper/Code
129VSTICCV2021Visual Saliency TransformerPaper/Code
130HQSODICCV2021Disentangled High Quality Salient Object DetectionPaper/Code
131iNASICCV2021iNAS: Integral NAS for Device-Aware Salient Object DetectionPaper/Code
132SCASODICCV2021Scene Context-Aware Salient Object DetectionPaper/Code
133MFNetICCV2021MFNet: Multi-Filter Directive Network for Weakly Supervised Salient Object DetectionPaper/Code
134SORICCV2021Salient Object Ranking with Position-Preserved AttentionPaper/Code
135EGVTNeurIPS2021Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency PredictionPaper/Code
136Reg-GNNNeurIPS2021Discovering Dynamic Salient Regions for Spatio-Temporal Graph Neural NetworksPaper/Code
137UDASODAAAI2022Unsupervised Domain Adaptive Salient Object Detection Through Uncertainty-Aware Pseudo-Label LearningPaper/Code
138CDFAAAI2022A Causal Debiasing Framework for Unsupervised Salient Object DetectionPaper/Code
139SalCoopNetsAAAI2022Energy-Based Generative Cooperative Saliency PredictionPaper/Code
140PSSODAAAI2022Weakly-Supervised Salient Object Detection Using Point SupervisonPaper/Code
141TRACERAAAI2022TRACER: Extreme Attention Guided Salient Object Tracing NetworkPaper/Code
142PoolNet+TPAMI2022PoolNet+: Exploring the Potential of Pooling for Salient Object DetectionPaper/Code
143SOD100KTPAMI2022A Highly Efficient Model to Study the Semantics of Salient Object DetectionPaper/Code
144CorrNetTGRS2022Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature CorrelationPaper/Code
145CDBFTOMM2022Disentangle Saliency Detection into Cascaded Detail Modeling and Body FillingPaper/Code
146NSALWSSTMM2022Noise-Sensitive Adversarial Learning for Weakly Supervised Salient Object DetectionPaper/Code
147ACCoNetT-Cybernetics2022Adjacent Context Coordination Network for Salient Object Detection in Optical Remote Sensing ImagesPaper/Code
148ICONTPAMI-Minor2022Salient Object Detection via Integrity LearningPaper/Code
149SOC-DataAugTPAMI2022Salient objects in clutterPaper/Code
150BASarXiv2022Boundary-aware segmentation network for mobile and web applicationsPaper/Code
151SHNetECCV2022Saliency Hierarchy Modeling via Generative Kernels for Salient Object DetectionPaper

6. Attribute-Level Performance

avatar

Download link: Google.

7. Application Example

Demo1: https://dengpingfan.github.io/videos/SOD-App-BASNetAR.mp4

8. Citation

Please cite our paper if you use our results:

@article{fan2022salient,
   title={Salient objects in clutter},
   author={Fan, Deng-Ping and Zhang, Jing and Xu, Gang and Cheng, Ming-Ming and Shao, Ling},
   journal={IEEE TPAMI},
   year={2022}
}