Awesome
Interesting-Python-APIs
print_2d_tensor_with_ids
bbox IoU and GIoU:
stack_with_padding
unique_with_idx_nd
the following code illustrate the difference between the inverse_indices
in torch.unique
and the index_map
in our unique_with_idx_nd
. In fact, index_map
is just the "inverse" version of inverse_indices
import torch
from utils_func import unique_with_idx_nd
mat = torch.randint(0,2,size=(20,3))
uniq_mat,index_map = unique_with_idx_nd(mat)
print(index_map,len(index_map)) # len == N_uniq
for i,imp in enumerate(index_map):
for j in imp:
assert torch.all(uniq_mat[i] == mat[j])
uniq_mat,inverse_indices, counts = torch.unique(mat,return_inverse=True,return_counts =True,dim=0)
print(inverse_indices,len(inverse_indices)) # len == N
assert torch.all(uniq_mat[inverse_indices] == mat)