Awesome
MotionLCM: Real-time Controllable Motion Generation via Latent Consistency Model
Wenxun Dai<sup>š</sup>, Ling-Hao Chen<sup>š</sup>, Jingbo Wang<sup>š„³</sup>, Jinpeng Liu<sup>š</sup>, Bo Dai<sup>š„³</sup>, Yansong Tang<sup>š</sup>
<sup>š</sup>Tsinghua University, <sup>š„³</sup>Shanghai AI Laboratory (Correspondence: Jingbo Wang and Bo Dai).
<p align="center"> <a href='https://arxiv.org/abs/2404.19759'> <img src='https://img.shields.io/badge/Arxiv-2404.19759-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a> <a href='https://arxiv.org/pdf/2404.19759.pdf'> <img src='https://img.shields.io/badge/Paper-PDF-purple?style=flat&logo=arXiv&logoColor=yellow'></a> <a href='https://huggingface.co/spaces/wxDai/MotionLCM'> <img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow'></a> <a href='https://dai-wenxun.github.io/MotionLCM-page'> <img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a> <a href='https://youtu.be/BhrGmJYaRE4'> <img src='https://img.shields.io/badge/YouTube-Video-EA3323?style=flat&logo=youtube&logoColor=EA3323'></a> <a href='https://www.bilibili.com/video/BV1uT421y7AN/'> <img src='https://img.shields.io/badge/Bilibili-Video-4EABE6?style=flat&logo=Bilibili&logoColor=4EABE6'></a> <a href='https://github.com/Dai-Wenxun/MotionLCM'> <img src='https://img.shields.io/badge/GitHub-Code-black?style=flat&logo=github&logoColor=white'></a> <a href='LICENSE'> <img src='https://img.shields.io/badge/License-MotionLCM-blue.svg'></a> <a href="" target='_blank'> <img src="https://visitor-badge.laobi.icu/badge?page_id=Dai-Wenxun.MotionLCM&left_color=gray&right_color=%2342b983"></a> </p>š¤© Abstract
This work introduces MotionLCM, extending controllable motion generation to a real-time level. Existing methods for spatial control in text-conditioned motion generation suffer from significant runtime inefficiency. To address this issue, we first propose the motion latent consistency model (MotionLCM) for motion generation, building upon the latent diffusion model (MLD). By employing one-step (or few-step) inference, we further improve the runtime efficiency of the motion latent diffusion model for motion generation. To ensure effective controllability, we incorporate a motion ControlNet within the latent space of MotionLCM and enable explicit control signals (e.g., pelvis trajectory) in the vanilla motion space to control the generation process directly, similar to controlling other latent-free diffusion models for motion generation. By employing these techniques, our approach can generate human motions with text and control signals in real-time. Experimental results demonstrate the remarkable generation and controlling capabilities of MotionLCM while maintaining real-time runtime efficiency.
š¢ News
- [2024/08/15] Support the training of motion latent diffusion model (MLD).
- [2024/08/09] Support the training of motion VAE.
- [2024/07/02] MotionLCM is officially accepted by ECCV 2024.
- [2024/05/01] Upload paper and release code.
šØāš« Quick Start
This section provides a quick start guide to set up the environment and run the demo. The following steps will guide you through the installation of the required dependencies, downloading the pretrained models, and preparing the datasets.
<details> <summary><b> 1. Conda environment </b></summary>conda create python=3.10 --name motionlcm
conda activate motionlcm
Install the packages in requirements.txt
and install PyTorch 1.13.1.
pip install -r requirements.txt
We test our code on Python 3.10.12 and PyTorch 1.13.1.
</details> <details> <summary><b> 2. Dependencies </b></summary>If you have the sudo
permission, install ffmpeg
for visualizing stick figure (if not already installed):
sudo apt update
sudo apt install ffmpeg
ffmpeg -version # check!
If you do not have the sudo
permission to install it, please install it via conda
:
conda install conda-forge::ffmpeg
ffmpeg -version # check!
Run the following command to install git-lfs
:
conda install conda-forge::git-lfs
Run the script to download dependencies materials:
bash prepare/download_glove.sh
bash prepare/download_t2m_evaluators.sh
bash prepare/prepare_t5.sh
bash prepare/download_smpl_models.sh
</details>
<details>
<summary><b> 3. Pretrained models </b></summary>
Run the script to download the pretrained models:
bash prepare/download_pretrained_models.sh
The folders experiments_t2m
and experiments_control
store pretrained models for text-to-motion and motion control respectively.
Visit the Google Driver to download the previous dependencies and models.
</details> <details> <summary><b> 5. Prepare the datasets </b></summary>Please refer to HumanML3D for text-to-motion dataset setup. Copy the result dataset to our repository:
cp -r ../HumanML3D/HumanML3D ./datasets/humanml3d
The unofficial method of data preparation can be found in this issue.
</details> <details> <summary><b> 6. Folder Structure </b></summary>After the whole setup pipeline, the folder structure will look like:
MotionLCM
āāā configs
āāā datasets
ā āāā humanml3d
ā ā āāā new_joint_vecs
ā ā āāā new_joints
ā ā āāā texts
ā ā āāā Mean.npy
ā ā āāā Std.npy
ā ā āāā ...
ā āāā humanml_spatial_norm
ā āāā Mean_raw.npy
ā āāā Std_raw.npy
āāā deps
ā āāā glove
ā āāā sentence-t5-large
| āāā smpl_models
ā āāā t2m
āāā experiments_control
ā āāā mld_humanml
ā ā āāā mld_humanml.ckpt
ā āāā motionlcm_humanml
ā āāā motionlcm_humanml.ckpt
āāā experiments_t2m
ā āāā mld_humanml
ā ā āāā mld_humanml.ckpt
ā āāā motionlcm_humanml
ā āāā motionlcm_humanml.ckpt
āāā ...
</details>
š¬ Demo
MotionLCM provides two main functionalities: text-to-motion and motion control. The following commands demonstrate how to use the pretrained models to generate motions. The outputs will be stored in ${cfg.TEST_FOLDER} / ${cfg.NAME} / demo_${timestamp}
(experiments_t2m_test/motionlcm_humanml/demo_2024-04-06T23-05-07
).
If you haven't completed 5. Prepare the datasets
in šØāš« Quick Start
, make sure to use the following command to download a tiny humanml3d dataset. The model instantiation requires the motion feature dimension of the dataset.
bash prepare/prepare_tiny_humanml3d.sh
Then, run the demo:
python demo.py --cfg configs/motionlcm_t2m.yaml --example assets/example.txt
</details>
<details>
<summary><b> 2. Text-to-Motion (using prompts from HumanML3D test set) </b></summary>
python demo.py --cfg configs/motionlcm_t2m.yaml
</details>
<details>
<summary><b> 3. Motion Control (using prompts and trajectory from HumanML3D test set) </b></summary>
python demo.py --cfg configs/motionlcm_control.yaml
</details>
<details>
<summary><b> 4. Render SMPL </b></summary>
After running the demo, the output folder will store the stick figure animation for each generated motion (e.g., assets/example.gif
).
To record the necessary information about the generated motion, a pickle file with the following keys will be saved simultaneously (e.g., assets/example.pkl
):
joints (numpy.ndarray)
: The XYZ positions of the generated motion with the shape of(nframes, njoints, 3)
.text (str)
: The text prompt.length (int)
: The length of the generated motion.hint (numpy.ndarray)
: The trajectory for motion control (optional).
To create SMPL meshes for a specific pickle file, let's use assets/example.pkl
as an example:
python fit.py --pkl assets/example.pkl
The SMPL meshes (numpy array) will be stored in assets/example_mesh.pkl
with the shape (nframes, 6890, 3)
.
You can also fit all pickle files within a folder. The code will traverse all .pkl
files in the directory and filter out files that have already been fitted.
python fit.py --dir assets/
</details>
<details>
<summary><b> 4.2 Render SMPL meshes </b></summary>
Refer to TEMOS-Rendering motions for blender setup (only Installation section).
We support three rendering modes for SMPL mesh, namely sequence
(default), video
and frame
.
YOUR_BLENDER_PATH/blender --background --python render.py -- --pkl assets/example_mesh.pkl --mode sequence --num 8
You will get a rendered image of num=8
keyframes as shown in assets/example_mesh.png
. The darker the color, the later the time.
YOUR_BLENDER_PATH/blender --background --python render.py -- --pkl assets/example_mesh.pkl --mode video --fps 20
You will get a rendered video with fps=20
as shown in assets/example_mesh.mp4
.
YOUR_BLENDER_PATH/blender --background --python render.py -- --pkl assets/example_mesh.pkl --mode frame --exact_frame 0.5
You will get a rendered image of the keyframe at exact_frame=0.5
(i.e., the middle frame) as shown in assets/example_mesh_0.5.png
.
š Train your own models
We provide the training guidance for both text-to-motion and motion control tasks. The following steps will guide you through the training process.
<details> <summary><b> 1. Important args in the config yaml </b></summary>The parameters required for model training and testing are recorded in the corresponding YAML file (e.g., configs/motionlcm_t2m.yaml
). Below are some of the important parameters in the file:
${FOLDER}
: The folder for the specific training task (i.e.,experiments_t2m
andexperiments_control
).${TEST_FOLDER}
: The folder for the specific testing task (i.e.,experiments_t2m_test
andexperiments_control_test
).${NAME}
: The name of the model (e.g.,motionlcm_humanml
).${FOLDER}
,${NAME}
, and the current timestamp constitute the training output folder (for example,experiments_t2m/motionlcm_humanml/2024-04-06T23-05-07
). The same applies to${TEST_FOLDER}
for testing.${TRAIN.PRETRAINED}
: The path of the pretrained model.${TEST.CHECKPOINTS}
: The path of the testing model.
2.1. Ready to train motion VAE and MLD (optional)
Please update the parameters in configs/vae.yaml
and configs/mld_t2m.yaml
. Then, run the following commands:
python -m train_vae --cfg configs/vae.yaml
python -m train_mld --cfg configs/mld_t2m.yaml
This step is OPTIONAL since we provide pre-trained models for training MotionLCM and motion ControlNet.
2.2. Ready to train MotionLCM
Please first check the parameters in configs/motionlcm_t2m.yaml
. Then, run the following command (13GB usage):
python -m train_motionlcm --cfg configs/motionlcm_t2m.yaml
2.3. Ready to train motion ControlNet
Please update the parameters in configs/motionlcm_control.yaml
. Then, run the following command (16GB usage):
python -m train_motion_control --cfg configs/motionlcm_control.yaml
</details>
<details>
<summary><b> 3. Evaluate the model </b></summary>
Text-to-Motion:
python -m test --cfg configs/motionlcm_t2m.yaml
Motion Control:
python -m test --cfg configs/motionlcm_control.yaml
</details>
š Results
We provide the quantitative and qualitative results in the paper.
<details> <summary><b> Text-to-Motion (quantitative) </b></summary> <img src="assets/quantitative_t2m.png" alt="example" width="100%"> </details> <details> <summary><b> Text-to-Motion (qualitative) </b></summary> <img src="assets/qualitative_t2m.png" alt="example" width="100%"> </details> <details> <summary><b> Motion Control (quantitative) </b></summary> <img src="assets/quantitative_mc.png" alt="example" width="100%"> </details>š¹ Acknowledgement
We would like to thank the authors of the following repositories for their excellent work: MLD, latent-consistency-model, OmniControl, TEMOS, HumanML3D, UniMoCap, joints2smpl.
š Citation
If you find this work useful, please consider citing our paper:
@article{motionlcm,
title={MotionLCM: Real-time Controllable Motion Generation via Latent Consistency Model},
author={Dai, Wenxun and Chen, Ling-Hao and Wang, Jingbo and Liu, Jinpeng and Dai, Bo and Tang, Yansong},
journal={arXiv preprint arXiv:2404.19759},
year={2024},
}
š License
This code is distributed under an MotionLCM LICENSE, which not allowed for commercial usage. Note that our code depends on other libraries and datasets which each have their own respective licenses that must also be followed.
š Star History
<p align="center"> <a href="https://star-history.com/#Dai-Wenxun/MotionLCM" target="_blank"> <img width="500" src="https://api.star-history.com/svg?repos=Dai-Wenxun/MotionLCM&type=Date" alt="Star History Chart"> </a> <p>If you have any question, please contact at Wenxun Dai and cc to Ling-Hao Chen and Jingbo Wang.