Home

Awesome

PIQ23: An Image Quality Assessment Dataset for Portraits

Visitors

This is the official repo for PIQ23, accepted in CVPR2023.

<img src=Imgs/download.png width = '100'>   <img src=Imgs/CVRP%20Logo_2023%20Vancouvar_Color.png width='200'>   <img src=Imgs/NTIRE2020_logo.png width='105'>   <img src=Imgs/youtube.avif width='100'>    <img src=Imgs/poster.png width='105'> <br/>

   PIQ23          CVPR2023 / FHIQA        NTIRE24        Video       Poster

Introduction

We present PIQ23, a portrait-specific image quality assessment dataset of 5116 images of predefined scenes acquired by more than 100 smartphones, covering a high variety of brands, models, and use cases. The dataset features individuals from a wide range of ages, genders, and ethnicities who have given explicit and informed consent for their photographs to be used in public research. It is annotated by pairwise comparisons (PWC) collected from over 30 image quality experts for three image attributes: face detail preservation, face target exposure, and overall image quality.

PIQ23

thumb

Important Notes

Dataset Access

Overview

The dataset structure is as follows:

├── Details 
├── Overall
├── Exposure
├── Scores_Details.csv
├── Scores_Overall.csv
└── Scores_Exposure.csv

Each folder is associated to an attribute (Details, Overall and Exposure). It contains the images of the corresponding regions of interest with the following naming: {img_nb}_{scene_name}_{scene_idx}.{ext}.

The CSV files include the following entries:

Test Splits

We provide two official test splits for PIQ23:

An example of how to use the splits can be found in the "Test split example.ipynb" notebook.

NB:

Benchmarks

Note on the experiments:

<table> <tr> <th colspan="13">Device Split</th> </tr> <tr> <th rowspan="2">Model\Attribute</th> <th colspan="4">Details</th> <th colspan="4">Exposure</th> <th colspan="4">Overall</th> </tr> <tr> <th>SROCC</th> <th>PLCC</th> <th>KROCC</th> <th>MAE</th> <th>SROCC</th> <th>PLCC</th> <th>KROCC</th> <th>MAE</th> <th>SROCC</th> <th>PLCC</th> <th>KROCC</th> <th>MAE</th> </tr> <tr> <td>DBCNN (1200 x LIVEC)</td> <td>0.787</td> <td>0.783</td> <td>0.59</td> <td>0.777</td> <td>0.807</td> <td>0.804</td> <td>0.611</td> <td>0.704</td> <td>0.83</td> <td>0.824</td> <td>0.653</td> <td>0.656</td> </tr> <tr> <td>MUSIQ (1200 x PAQ2PIQ)</td> <td>0.824</td> <td>0.831</td> <td>0.65</td> <td>0.627</td> <td><b>0.848</b></td> <td><b>0.859</b></td> <td><b>0.671</b></td> <td><b>0.585</b></td> <td><b>0.848</b></td> <td>0.837</td> <td>0.65</td> <td>0.626</td> </tr> <tr> <td>HyperIQA (1344 (224*6) x No IQA pretraining)</td> <td>0.793</td> <td>0.766</td> <td>0.618</td> <td>0.751</td> <td>0.8</td> <td>0.828</td> <td>0.636</td> <td>0.721</td> <td>0.818</td> <td>0.825</td> <td>0.66</td> <td><b>0.612</b></td> </tr> <tr> <td>SEM-HyperIQA (1344 (224*6) x No IQA pretraining)</td> <td>0.854</td> <td>0.847</td> <td>0.676</td> <td>0.645</td> <td>0.826</td> <td>0.858</td> <td>0.65</td> <td>0.635</td> <td>0.845</td> <td><b>0.856</b></td> <td><b>0.674</b></td> <td>0.641</td> </tr> <tr> <td>SEM-HyperIQA-CO (1344 (224*6) x No IQA pretraining)</td> <td>0.829</td> <td>0.821</td> <td>0.641</td> <td>0.697</td> <td>0.816</td> <td>0.843</td> <td>0.633</td> <td>0.668</td> <td>0.829</td> <td>0.843</td> <td>0.64</td> <td>0.624</td> </tr> <td>SEM-HyperIQA-SO (1344 (224*6) x No IQA pretraining)</td> <td><b>0.874</b></td> <td><b>0.871</b></td> <td><b>0.709</b></td> <td><b>0.583</b></td> <td>0.826</td> <td>0.846</td> <td>0.651</td> <td>0.678</td> <td>0.84</td> <td>0.849</td> <td>0.661</td> <td>0.639</td> <tr> </tr> </table> <table> <tr> <th colspan="13">Scene Split</th> </tr> <tr> <th rowspan="2">Model\Attribute</th> <th colspan="4">Details</th> <th colspan="4">Exposure</th> <th colspan="4">Overall</th> </tr> <tr> <th>SROCC</th> <th>PLCC</th> <th>KROCC</th> <th>MAE</th> <th>SROCC</th> <th>PLCC</th> <th>KROCC</th> <th>MAE</th> <th>SROCC</th> <th>PLCC</th> <th>KROCC</th> <th>MAE</th> </tr> <tr> <td>DBCNN (1200 x LIVEC)</td> <td>0.59</td> <td>0.51</td> <td>0.45</td> <td>0.99</td> <td>0.69</td> <td>0.69</td> <td>0.51</td> <td>0.91</td> <td>0.59</td> <td>0.64</td> <td>0.43</td> <td>1.04</td> </tr> <tr> <td>MUSIQ (1200 x PAQ2PIQ)</td> <td>0.72</td> <td><b>0.77</b></td> <td>0.53</td> <td>0.90</td> <td><b>0.79</b></td> <td><b>0.772</b></td> <td><b>0.59</b></td> <td>0.87</td> <td>0.736</td> <td>0.74</td> <td>0.54</td> <td><b>0.95</b></td> </tr> <tr> <td>HyperIQA (1344 (224*6) x No IQA pretraining)</td> <td>0.701</td> <td>0.668</td> <td>0.504</td> <td>0.936</td> <td>0.692</td> <td>0.684</td> <td>0.498</td> <td>0.863</td> <td>0.74</td> <td>0.736</td> <td>0.55</td> <td>0.989</td> </tr> <tr> <td>SEM-HyperIQA (1344 (224*6) x No IQA pretraining)</td> <td>0.732</td> <td>0.649</td> <td><b>0.547</b></td> <td>0.879</td> <td>0.716</td> <td>0.697</td> <td>0.53</td> <td>0.967</td> <td>0.749</td> <td>0.752</td> <td>0.558</td> <td>1.033</td> </tr> <tr> <td>SEM-HyperIQA-CO (1344 (224*6) x No IQA pretraining)</td> <td><b>0.746</b></td> <td>0.714</td> <td><b>0.549</b></td> <td>0.849</td> <td>0.698</td> <td>0.698</td> <td>0.517</td> <td>0.945</td> <td>0.739</td> <td>0.736</td> <td>0.55</td> <td>1.038</td> </tr> <tr> <td>FULL-HyperIQA (1344 (224*6) x No IQA pretraining)</td> <td>0.74</td> <td>0.72</td> <td><b>0.55</b></td> <td><b>0.8</b></td> <td>0.76</td> <td>0.71</td> <td>0.57</td> <td><b>0.85</b></td> <td><b>0.78</b></td> <td><b>0.78</b></td> <td><b>0.59</b></td> <td>1.12</td> </tr> </table>

TO DO

Citation

Please cite the paper/dataset as follows:

@InProceedings{Chahine_2023_CVPR,
    author    = {Chahine, Nicolas and Calarasanu, Stefania and Garcia-Civiero, Davide and Cayla, Th\'eo and Ferradans, Sira and Ponce, Jean},
    title     = {An Image Quality Assessment Dataset for Portraits},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2023},
    pages     = {9968-9978}
}

License

Provided that the user complies with the Terms of Use, the provider grants a limited, non-exclusive, personal, non-transferable, non-sublicensable, and revocable license to access, download and use the Database for internal and research purposes only, during the specified term. The User is required to comply with the Provider's reasonable instructions, as well as all applicable statutes, laws, and regulations.

About

For any questions please contact: piq2023@dxomark.com