Home

Awesome

SqueezeNet Keras Implementation

This is the Keras implementation of SqueezeNet using functional API (arXiv 1602.07360). SqueezeNet is a small model of AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. The original model was implemented in caffe.

Reference

pysqueezenet by yhenon

Differences:

Result

This repository contains only the Keras implementation of the model, for other parameters used, please see the demo script, squeezenet_demo.py in the simdat package.

The training process uses a total of 2,600 images with 1,300 images per class (so, total two classes only). There are a total 130 images used for validation. After 20 epochs, the model achieves the following:

loss: 0.6563 - acc: 0.7065 - val_loss: 0.6247 - val_acc: 0.8750

Model Visualization