Awesome
YOLO-World + EfficientViT SAM
🤗 HuggingFace Space
Prerequisites
This project is developed and tested on Python3.10.
# Create and activate a python 3.10 environment.
conda create -n yolo-world-with-efficientvit-sam python=3.10 -y
conda activate yolo-world-with-efficientvit-sam
# Setup packages.
make setup
How to Run
python app.py
Open http://127.0.0.1:7860/ on your web browser.
Core Components
YOLO-World
YOLO-World is an open-vocabulary object detection model with high efficiency. On the challenging LVIS dataset, YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed. <img width="1024" src="https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/fce57405-e18d-45f3-bea8-fc3971faf975">
EfficientViT SAM
EfficientViT SAM is a new family of accelerated segment anything models. Thanks to the lightweight and hardware-efficient core building block, it delivers 48.9× measured TensorRT speedup on A100 GPU over SAM-ViT-H without sacrificing performance.
<img width="1024" src="https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/9eec003f-47c9-43a5-86b0-82d6689e1bf9"> <img width="1024" src="https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/d79973bb-0d80-4b64-a175-252de56d0d09">Powered By
@misc{zhang2024efficientvitsam,
title={EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss},
author={Zhuoyang Zhang and Han Cai and Song Han},
year={2024},
eprint={2402.05008},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@article{cheng2024yolow,
title={YOLO-World: Real-Time Open-Vocabulary Object Detection},
author={Cheng, Tianheng and Song, Lin and Ge, Yixiao and Liu, Wenyu and Wang, Xinggang and Shan, Ying},
journal={arXiv preprint arXiv:2401.17270},
year={2024}
}
@article{cai2022efficientvit,
title={Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition},
author={Cai, Han and Gan, Chuang and Han, Song},
journal={arXiv preprint arXiv:2205.14756},
year={2022}
}