Home

Awesome

Concept Semi-Permeable Membrane

✏️ Project Page | 📄 arXiv | 🤗 Hugging Face

sample

(The generation samples demonstrating 'Cat' SPM, which is trained on SD v1.4 and applied on RealisticVision. The upper row shows the original generation and the lower row shows the SPM-equipped ones.)

We propose Concept <u>S</u>emi-<u>P</u>ermeable <u>M</u>embrane (SPM), as a solution to erase or edit concepts for diffusion models (DMs).

Briefly, it can achieve two main purposes:

SPM has following advantages:

Getting Started

0. Setup

We use Conda to setup the training environments:

conda create -n spm python=3.10
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118
pip install xformers
pip install -r requirements.txt

Additionally, you can setup SD-WebUI for generation with SPMs as well.

1. Training SPMs

In the demo.ipynb notebook we provide tutorials for setting up configs and training. Please refer to the notebook for further details.

2. Generate with SPMs

We provide three approaches to generate images after acquiring SPMs:

(Recommended) Generate with our provided code

First, you need to setup your generation config. configs/generaion.yaml is an example. Then you can generate images by running the following commands:

python infer_spm.py \
		--config ${generation_config}	\
		--spm_path ${spm_1} ... ${spm_n} \
		--base_model ${base_model_path_or_link} \ 											# e.g. CompVis/stable-diffusion-v1-4

Generate in the notebook demo

The demo.ipynb notebook also offers codes for generate samples with single or multi SPMs.

Notice: In this way, the Facilitate Transfer mechanism of SPM will NOT be activated. SPMs will have a relatively higher impact on non-targeted concepts.

Generate with SD-WebUI

The SPMs can be well adapted to the SD-WebUI for more generation options. You can load SPM as a LoRA module to the desired SD model.

Notice: In this way, the Facilitate Transfer mechanism of SPM will NOT be activated. SPMs will have a relatively higher impact on non-targeted concepts.

3. Evaluate SPMs

To validate the provided results in our paper, you can run the following code to evaluate the trained SPMs on the four pre-defined tasks. To check the detailed arguments explaination, just run python evaluate_task.py -h .

accelerate launch --num_processes ${num_gpus} evaluate_task.py \
		--task ${task} \
		--task_args ${task_args} \
		--img_save_path ${img_save_path} \
		--save_path ${save_path}

Model Zoo

Trained SPM for SD v1.x:

Task TypeSPM
General ConceptsSnoopy, Mickey, Spongebob, Pikachu, Donald Duck, Cat, <br />Wonder Woman (->Gal Gadot), Luke Skywalker (->Darth Vader), Joker (->Heath Ledger), Joker (->Batman)
Artistic StylesVan Gogh, Picasso, Rembrant, Comic
Explicit ContentsNudity

SPM for SD v2.x and SDXL will be released in the future.

References

This repo is the code for the paper One-dimentional Adapter to Rule Them All: Concepts, Diffusion Models and Erasing Applications.

Thanks for the creative ideas of the pioneer researches:

In addition, these repos inspires the implementation of ours:

If you find this repo useful, you can cite our work as follows:

@misc{lyu2023onedimensional,
      title={One-dimensional Adapter to Rule Them All: Concepts, Diffusion Models and Erasing Applications}, 
      author={Mengyao Lyu and Yuhong Yang and Haiwen Hong and Hui Chen and Xuan Jin and Yuan He and Hui Xue and Jungong Han and Guiguang Ding},
      year={2023},
      eprint={2312.16145},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}