Awesome
DockingGA
The code of article:
DockingGA: Enhancing Targeted Molecule Generation using Transformer Neural Network and Genetic Algorithm with Docking Simulation
1.Setting up the environment
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
conda install -c dglteam dgl-cuda10.1
conda install -c rdkit rdkit
pip install neptune-client
pip install tqdm
pip install psutil
2.neptune initialization (https://app.neptune.ai/)
You need to complete the neptune initialization here:
neptune.init(project_qualified_name="",api_token='',)
3.Run pre-train or generate
CUDA_VISIBLE_DEVICES=$GPU_DEVICE python xx.py
4.Dataset
All data is stored here:
./resource/data
5.pyscreener
For pyscreener installation please refer to the following link:
https://github.com/coleygroup/pyscreener
Cite
Changnan Gao, Wenjie Bao, Shuang Wang, Jianyang Zheng, Lulu Wang, Yongqi Ren, Linfang Jiao, Jianmin Wang, Xun Wang, DockingGA: enhancing targeted molecule generation using transformer neural network and genetic algorithm with docking simulation, Briefings in Functional Genomics, 2024;, elae011, https://doi.org/10.1093/bfgp/elae011