Awesome
Semantic Image Inpainting TensorFlow
This repository is a Tensorflow implementation of the Semantic Image Inpainting with Deep Generative Models, CVPR2017.
<p align='center'> <img src="https://user-images.githubusercontent.com/37034031/43243280-d4e8a3c0-90e0-11e8-8495-b768427019bb.png") </p>Requirements
- tensorflow 1.9.0
- python 3.5.3
- numpy 1.14.2
- pillow 5.0.0
- matplotlib 2.0.2
- scipy 0.19.0
- opencv 3.2.0
- pyamg 3.3.2
Semantic Image Inpainting
- celebA
- Note: The following resutls are cherry-picked images
- SVHN
- Note: The following resutls are cherry-picked images
- Failure Examples
Documentation
Download Dataset
- celebA Dataset
Use the following command to download
CelebA
dataset and copy theCelebA
dataset on the corresponding file as introduced in Directory Hierarchy information. Manually remove approximately 2,000 images from the dataset for testing, put them on theval
folder and others in the `train' folder.
python download.py celebA
- SVHN Dataset
Download SVHN data from The Street View House Numbers (SVHN) Dataset website. Two mat files you need to download aretrain_32x32.mat
andtest_32x32.mat
in Cropped Digits Format 2.
Directory Hierarchy
.
│ semantic_image_inpainting
│ ├── src
│ │ ├── dataset.py
│ │ ├── dcgan.py
│ │ ├── download.py
│ │ ├── inpaint_main.py
│ │ ├── inpaint_model.py
│ │ ├── inpaint_solver.py
│ │ ├── main.py
│ │ ├── solver.py
│ │ ├── mask_generator.py
│ │ ├── poissonblending.py
│ │ ├── tensorflow_utils.py
│ │ └── utils.py
│ Data
│ ├── celebA
│ │ ├── train
│ │ └── val
│ ├── svhn
│ │ ├── test_32x32.mat
│ │ └── train_32x32.mat
src: source codes of the Semantic-image-inpainting
Implementation Details
We need two sperate stages to utilize semantic image inpainting model.
- First, independently train DCGAN on your dataset as the original DCGAN process.
- Second, use pretrained DCGAN and semantic-image-inpainting model to restore the corrupt images.
Same generator and discriminator networks of the DCGAN are used as described in Alec Radford's paper, except that batch normalization of training mode is used in training and test mode that we found to get more stalbe results. Semantic image inpainting model is implemented as moodoki's semantic_image_inpainting. Some bugs and different implementations of the original paper are fixed.
Stage 1: Training DCGAN
Use main.py
to train a DCGAN network. Example usage:
python main.py --is_train=true
gpu_index
: gpu index, default:0
batch_size
: batch size for one feed forward, default:256
dataset
: dataset name for choice [celebA|svhn], default:celebA
is_train
: training or inference mode, default:False
learning_rate
: initial learning rate, default:0.0002
beta1
: momentum term of Adam, default:0.5
z_dim
: dimension of z vector, default:100
iters
: number of interations, default:200000
print_freq
: print frequency for loss, default:100
save_freq
: save frequency for model, default:10000
sample_freq
: sample frequency for saving image, default:500
sample_size
: sample size for check generated image quality, default:64
load_model
: folder of save model that you wish to test, (e.g. 20180704-1736). default:None
Evaluate DCGAN
Use main.py
to evaluate a DCGAN network. Example usage:
python main.py --is_train=false --load_model=folder/you/wish/to/test/e.g./20180704-1746
Please refer to the above arguments.
Stage 2: Utilize Semantic-image-inpainting Model
Use inpaint_main.py
to utilize semantic-image-inpainting model. Example usage:
python inpaint_main.py --dataset=celebA \
--load_model=DCGAN/model/you/want/to/use/e.g./20180704-1746 \
--mask_type=center
gpu_index': gpu index, default:
0`dataset
: dataset name for choice [celebA|svhn], default:celebA
learning_rate
: learning rate to update latent vector z, default:0.01
momentum
: momentum term of the NAG optimizer for latent vector, default:0.9
z_dim
: dimension of z vector, default:100
lamb
: hyper-parameter for prior loss, default:3
is_blend
: blend predicted image to original image, default:true
mask_type
: mask type choice in [center|random|half|pattern], default:center
img_size
: image height or width, default:64
iters
: number of iterations to optimize latent vector, default:1500
num_try
: number of random samples, default:20
print_freq
: print frequency for loss, default:100
sample_batch
: number of sampling images, default:2
load_model
: saved DCGAN model that you with to test, (e.g. 20180705-1736), default:None
Loss for Optimizing Latent Vector
- Content Loss
- Prior Loss
- Total Loss
Citation
@misc{chengbinjin2018semantic-image-inpainting,
author = {Cheng-Bin Jin},
title = {semantic-image-inpainting},
year = {2018},
howpublished = {\url{https://github.com/ChengBinJin/semantic-image-inpainting}},
note = {commit xxxxxxx}
}
Attributions/Thanks
- This project borrowed some code from carpedm20 and moodoki.
- Some readme formatting was borrowed from Logan Engstrom
License
Copyright (c) 2018 Cheng-Bin Jin. Contact me for commercial use (or rather any use that is not academic research) (email: sbkim0407@gmail.com). Free for research use, as long as proper attribution is given and this copyright notice is retained.