Home

Awesome

<div align="center"> <h2> RSCaMa: Remote Sensing Image Change Captioning with State Space Model </h2> </div> <br> <div align="center"> <img src="resource/RSCaMa.png" width="800"/> </div> <div align="center"> <a href="https://ieeexplore.ieee.org/abstract/document/10537177"> <span style="font-size: 20px; ">Paper</span> </a> </div>

license

Share us a :star: if you're interested in this repo

This repository contains the PyTorch implementation of "RSCaMa: Remote Sensing Image Change Captioning with State Space Model".

Installation and Dependencies

git clone https://github.com/Chen-Yang-Liu/RSCaMa.git
cd RSCaMa
conda create -n RSCaMa_env python=3.9
conda activate RSCaMa_env
pip install -r requirements.txt

Data Preparation

├─/root/Data/LEVIR_CC/
        ├─LevirCCcaptions.json
        ├─images
             ├─train
             │  ├─A
             │  ├─B
             ├─val
             │  ├─A
             │  ├─B
             ├─test
             │  ├─A
             │  ├─B

where folder A contains images of pre-phase, folder B contains images of post-phase.

python preprocess_data.py --input_captions_json /DATA_PATH/Levir-CC-dataset/LevirCCcaptions.json

!NOTE: When preparing the text token files, we suggest setting the word count threshold of LEVIR-CC to 5 and Dubai_CC to 0 for fair comparisons.

NOTE

Training

python train_CC.py --data_folder /DATA_PATH/Levir-CC-dataset/images

!NOTE: If the program encounters the error: "'Meteor' object has no attribute 'lock'," we recommend installing it with sudo apt install openjdk-11-jdk to resolve this issue.

Evaluate

python test.py --data_folder /DATA_PATH/Levir-CC-dataset/images --checkpoint xxxx.pth

Alternatively, you can download our pretrained model here: [Hugging face].

Experiment:

<br> <div align="center"> <img src="resource/table1.png" width="800"/> </div> <be> <br> <div align="center"> <img src="resource/table2.png" width="800"/> </div> <br> <br> <div align="center"> <img src="resource/table3.png" width="400"/> </div> <br>

Citation:

@ARTICLE{liu2024rscama,
  author={Liu, Chenyang and Chen, Keyan and Chen, Bowen and Zhang, Haotian and Zou, Zhengxia and Shi, Zhenwei},
  journal={IEEE Geoscience and Remote Sensing Letters}, 
  title={RSCaMa: Remote Sensing Image Change Captioning With State Space Model}, 
  year={2024},
  volume={21},
  number={},
  pages={1-5},
  keywords={Decoding;Visualization;Transformers;Task analysis;Solid modeling;Remote sensing;Feature extraction;Change captioning;Mamba;spatial difference-guided SSM;state space model (SSM);temporal traveling SSM},
  doi={10.1109/LGRS.2024.3404604}}

<details><summary></summary> <p>

Our other work:

Our other Mamba-based work is as follows:

</p></details>