Home

Awesome

DAQ: Channel-Wise Distribution-Aware Quantization for Deep Image Super-Resolution Networks

Official implementation of our WACV 2022 paper.

Conda Environment setting

conda env create -f environment.yml --name DAQ
conda activate DAQ
conda install -c anaconda scikit-image

Dependencies

Codes

Our implementation is based on EDSR(PyTorch).

Train

sh train_EDSR_x4.sh

Pretrained model to start training from can be accessed from Google Drive.

Test

sh test.sh edsr_baseline 2 2 4 (edsr_baseline w2a2qq4)
sh test.sh edsr_baseline 3 3 4 (edsr_baseline w3a3qq4)
sh test.sh edsr_baseline 4 4 4 (edsr_baseline w4a4qq4)
sh test.sh edsr_full 2 2 8 (edsr_full w2a2qq8)

Our pretrained model can be accessed from Google Drive.

Additional Results

Our model achieves the following performance (PSNR / SSIM) when trained for 60 epochs :

ModelPrecision (w/a)Set5Set14B100Urban100
EDSR-baseline (x4)32 / 3232.10 / 0.89428.58 / 0.78127.56 / 0.73626.04 / 0.785
EDSR-baseline-DAQ4 / 431.85 / 0.88728.38 / 0.77627.42 / 0.73225.73 / 0.772
EDSR-baseline-DAQ3 / 331.66 / 0.88428.19 / 0.77127.28 / 0.72825.40 / 0.762
EDSR-baseline-DAQ2 / 231.01 / 0.87127.89 / 0.76227.09 / 0.71924.88 / 0.740
ModelPrecision (w/a)Set5Set14B100Urban100
RDN (x4)32 / 3232.24 / 0.89628.67 / 0.78427.63 / 0.73826.29 / 0.792
RDN-DAQ4 / 431.91 / 0.88928.38 / 0.77527.38 / 0.73325.81 / 0.779
RDN-DAQ3 / 331.57 / 0.88328.18 / 0.77127.27 / 0.72825.47 / 0.765
RDN-DAQ2 / 230.71 / 0.86627.61 / 0.75526.93 / 0.71524.71 / 0.731
ModelPrecision (w/a)Set5Set14B100Urban100
SRResNet (x4)32 / 3232.07 / 0.89328.50 / 0.78027.52 / 0.73525.86 / 0.779
SRResNet-DAQ4 / 431.85 / 0.88928.41 / 0.77727.45 / 0.73225.70 / 0.772
SRResNet-DAQ3 / 331.81 / 0.88928.35 / 0.77627.40 / 0.73325.63 / 0.772
SRResNet-DAQ2 / 231.57 / 0.88628.19 / 0.77327.30 / 0.72925.39 / 0.765

Citation

@inproceedings{hong2022daq,
  title={DAQ: Channel-Wise Distribution-Aware Quantization for Deep Image Super-Resolution Networks},
  author={Hong, Cheeun and Kim, Heewon and Baik, Sungyong and Oh, Junghun and Lee, Kyoung Mu},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={2675--2684},
  year={2022}
}

Contact

Email : cheeun914@snu.ac.kr