Home

Awesome

Text Image Augmentation

Build Status

A general geometric augmentation tool for text images in the CVPR 2020 paper "Learn to Augment: Joint Data Augmentation and Network Optimization for Text Recognition". We provide the tool to avoid overfitting and gain robustness of text recognizers.

Note that this is a general toolkit. Please customize for your specific task. If the repo benefits your work, please cite the papers.

News

Requirements

We recommend Anaconda to manage the version of your dependencies. For example:

     conda install boost=1.67.0

Installation

Build library:

    mkdir build
    cd build
    cmake -D CUDA_USE_STATIC_CUDA_RUNTIME=OFF ..
    make

Copy the Augment.so to the target folder and follow demo.py to use the tool.

    cp Augment.so ..
    cd ..
    python demo.py

Demo

Speed

To transform an image with size (H:64, W:200), it takes less than 3ms using a 2.0GHz CPU. It is possible to accelerate the process by calling multi-process batch samplers in an on-the-fly manner, such as setting "num_workers" in PyTorch.

Improvement for Recognition

We compare the accuracies of CRNN trained using only the corresponding small training set.

<center>Dataset</center><center>IIIT5K</center><center>IC13</center><center>IC15</center>
Without Data Augmentation<center>40.8%</center><center>6.8%</center><center>8.7%</center>
<center>With Data Augmentation</center><center>53.4%</center><center>9.6%</center><center>24.9%</center>

Citation

@inproceedings{luo2020learn,
  author = {Canjie Luo and Yuanzhi Zhu and Lianwen Jin and Yongpan Wang},
  title = {Learn to Augment: Joint Data Augmentation and Network Optimization for Text Recognition},
  booktitle = {CVPR},
  year = {2020}
}

@inproceedings{wang2020decoupled,
  author = {Tianwei Wang and Yuanzhi Zhu and Lianwen Jin and Canjie Luo and Xiaoxue Chen and Yaqiang Wu and Qianying Wang and Mingxiang Cai}, 
  title = {Decoupled attention network for text recognition}, 
  booktitle ={AAAI}, 
  year = {2020}
}

@article{schaefer2006image,
  title={Image deformation using moving least squares},
  author={Schaefer, Scott and McPhail, Travis and Warren, Joe},
  journal={ACM Transactions on Graphics (TOG)},
  volume={25},
  number={3},
  pages={533--540},
  year={2006},
  publisher={ACM New York, NY, USA}
}

Acknowledgment

Thanks for the contribution of the following developers.

@keeofkoo

@cxcxcxcx

@Yati Sagade

Attention

The tool is only free for academic research purposes.