Awesome
GET
<img src="get.png" alt="model" style="zoom: 50%;" />This is the code for the www'22 Paper: Evidence-aware Fake News Detection with Graph Neural Networks.
Usage
We utilize two widely used datasets.
- Snopes: http://resources.mpi-inf.mpg.de/impact/dl_cred_analysis/Snopes.zip
- PolitiFact: http://resources.mpi-inf.mpg.de/impact/dl_cred_analysis/PolitiFact.zip
You can run the commands below to train and test our model on Snopes Dataset.
python MasterFC/master_get.py --dataset="Snopes" \
--cuda=1 \
--fixed_length_left=30 \
--fixed_length_right=100 \
--log="logs/get" \
--loss_type="cross_entropy" \
--batch_size=32 \
--num_folds=5 \
--use_claim_source=0 \
--use_article_source=1 \
--path="formatted_data/declare/" \
--hidden_size=300 \
--epochs=100 \
--num_att_heads_for_words=5 \
--num_att_heads_for_evds=2 \
--gnn_window_size=3 \
--lr=0.0001 \
--gnn_dropout=0.2 \
--seed=123756 \
--gsl_rate=0.6
You can also simply run the bash script.
sh run_snopes.sh
or
sh run_politifact.sh (on the PolitiFact dataset)
Requirements
We use Pytorch 1.9.1 and python 3.6. Other requirements are in requirements.txt.
pip install -r requirements.txt
Citation
Please cite our paper if you use the code:
@inproceedings{xu2022evidence,
title={Evidence-aware fake news detection with graph neural networks},
author={Xu, Weizhi and Wu, Junfei and Liu, Qiang and Wu, Shu and Wang, Liang},
booktitle={Proceedings of the ACM web conference 2022},
pages={2501--2510},
year={2022}
}
Acknowledge
The general structure of our codes inherites from the open-source codes of MAC, we thank them for their great contribution to the research community of fake news detection.