Awesome
Stock Trend Prediction with Multi-granularity Data: A Contrastive Learning Approach with Adaptive Fusion
-
Dependencies
Install packages from
requirements.txt
. -
Load Data using qlib
$ cd ./load_data
Download daily data:
$ python load_dataset.py
-
Change parameter
market
to get data from different dataset:csi300
,csi800
,NASDAQ
etc.Data Sample - SH600000 in CSI300
features dimensions = 6 * 20 + 1 = 121
Download high-frequency data:
$ python high_freq_resample.py
-
Change parameter
N
to get data from different frequencies:15min
,30min
,120min
etc.Data Sample - SH600000 in CSI300
features dimensions = 16 * 6 * 20 + 1 = 1921
-
-
Framework
- Pre-training Stage: Contrastive Mechanisms:
./framework/models/contrastive_all_2_encoder.py
- Adaptive Multi-granularity Feature Fusion:
./framework/models/contrastive_all_2_stage.py
-
Run
$ cd ./framework
Train Pre-train
model:
$ python main_contrast.py with config/contrast_all_2_encoder.json model_name=contrastive_all_2_encoder
- Add
hyper-param
= {values
} afterwith
or change them inconfig/main_model.json
- Prediction results of each model are saved as
pred_{model_name}.pkl
in./out/
.
Train Adaptive Multi-granularity Feature Fusion
model:
$ python main_contrast_2_stage.py with config/contrast_all_2_stage.json model_name=contrastive_all_2_stage
Run Market Trading Simulation
:
- Prerequisites:
- Server with qlib
- Prediction results
$ cd ./framework
$ python trade_sim.py
-
Records
Records for each experiment are saved in./framework/my_runs/
.
Each record file includes:config.json
-
contains the parameter settings and data path.
cout.txt
-
contains the name of dataset, detailed model output, and experiment results.
pred_{model_name}_{seed}.pkl
-
> * contains the `score` (model prediction) and `label`
> run.json
* contains the hash ids of every script used in the experiment. And the source code can be found in `./framework/my_runs/source/`.