Awesome
<h1 align="center"> <p>Conditional Adaptive Multi-Task Learning: a Hypernetwork for NLU</p> </h1> <p align="center"> <a> <img alt="Python" src="https://img.shields.io/badge/Python-3.7-blue"> </a> <a> <img alt="Python" src="https://img.shields.io/badge/Pytorch-1.6-blue"> </a> <a> <img alt="Python" src="https://img.shields.io/badge/Release-1.0.0-blue"> </a> <a> <img alt="Python" src="https://img.shields.io/badge/License-MIT-blue"> </a> </p>The source code uses the huggingface implementation of transformers adapted for multitask training. Our paper was accepted at ICLR 2021 (https://openreview.net/pdf?id=de11dbHzAMF).
Requirements
- Python 3.7
- Pytorch 1.6
- Huggingface transformers 2.11.0
Note: Newer versions of the requirements should work, but was not tested.
Using a virual environment
# Create a virtual environment
python3.7 -m venv ca_mtl_env
source ca_mtl_env/bin/activate
# Install the requirements
pip install requirements-with-torch.txt
# If you are using an environment that have torch already installed use "requirements.txt"
Using Docker
We created a public docker image that contains all the requirements and the source code hosted on DockerHub.
export DOCKER_IMG=DOCKER_FILE:latest
# Pull the image
docker pull $DOCKER_IMG
Data
Using the official GLUE data download scirpt, download all datasets
export DATA_DIR=/my/data/dir/path
# Make sure the data folder exists
python download_glue_data.py --data_dir $DATA_DIR --tasks all
Run training
# Set the output dir
export OUTPUT_DIR=/path/to/output/dir
Using the created virtual environment
python run.py --model_name_or_path CA-MTL-base --data_dir $DATA_DIR --output_dir $OUTPUT_DIR --do_train --do_eval --num_train_epochs 5 --learning_rate 2e-5 --seed 12 --overwrite_cache
Using the pulled docker image
docker run -v /data:$DATA_DIR $DOCKER_IMG --model_name_or_path CA-MTL-base --data_dir $DATA_DIR --output_dir $OUTPUT_DIR --do_train --do_eval --num_train_epochs 5 --learning_rate 2e-5 --seed 12 --overwrite_cache
Add parameter --use_mt_uncertainty
to use the uncertainty sampling technique described in the paper. To use uniform sampling use --uniform_mt_sampling
. Otherwise, the tasks will be sequentially sampled until data runs out.
To freeze layers, use --freeze_encoder_layers 0-N
. Results in the paper are based on N=4
for base and N=11
for large models. Note that you may remove --overwrite_cache
to make data loading faster.
Usage
usage: run.py [-h] --model_name_or_path MODEL_NAME_OR_PATH --data_dir DATA_DIR
[--tasks TASKS [TASKS ...]] [--overwrite_cache]
[--max_seq_length MAX_SEQ_LENGTH] --output_dir OUTPUT_DIR
[--overwrite_output_dir] [--do_train] [--do_eval] [--do_predict]
[--evaluate_during_training]
[--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE]
[--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE]
[--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE]
[--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE]
[--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS]
[--learning_rate LEARNING_RATE] [--weight_decay WEIGHT_DECAY]
[--adam_epsilon ADAM_EPSILON] [--max_grad_norm MAX_GRAD_NORM]
[--num_train_epochs NUM_TRAIN_EPOCHS] [--max_steps MAX_STEPS]
[--warmup_steps WARMUP_STEPS] [--logging_dir LOGGING_DIR]
[--logging_first_step] [--logging_steps LOGGING_STEPS]
[--save_steps SAVE_STEPS] [--save_total_limit SAVE_TOTAL_LIMIT]
[--no_cuda] [--seed SEED] [--fp16]
[--fp16_opt_level FP16_OPT_LEVEL] [--local_rank LOCAL_RANK]
[--tpu_num_cores TPU_NUM_CORES] [--tpu_metrics_debug]
[--use_mt_uncertainty]
optional arguments:
-h, --help show this help message and exit
--model_name_or_path MODEL_NAME_OR_PATH
Path to pretrained model or model identifier from: CA-
MTL-base, CA-MTL-large, bert-base-cased bert-base-
uncased, bert-large-cased, bert-large-uncased
--data_dir DATA_DIR The input data dir. Should contain the .tsv files (or
other data files) for the task.
--tasks TASKS [TASKS ...]
The task file that contains the tasks to train on. If
None all tasks will be used
--overwrite_cache Overwrite the cached training and evaluation sets
--max_seq_length MAX_SEQ_LENGTH
The maximum total input sequence length after
tokenization. Sequences longer than this will be
truncated, sequences shorter will be padded.
--output_dir OUTPUT_DIR
The output directory where the model predictions and
checkpoints will be written.
--overwrite_output_dir
Overwrite the content of the output directory.Use this
to continue training if output_dir points to a
checkpoint directory.
--do_train Whether to run training.
--do_eval Whether to run eval on the dev set.
--do_predict Whether to run predictions on the test set.
--evaluate_during_training
Run evaluation during training at each logging step.
--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE
Batch size per GPU/TPU core/CPU for training.
--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE
Batch size per GPU/TPU core/CPU for evaluation.
--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE
Deprecated, the use of `--per_device_train_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
training.
--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE
Deprecated, the use of `--per_device_eval_batch_size`
is preferred.Batch size per GPU/TPU core/CPU for
evaluation.
--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS
Number of updates steps to accumulate before
performing a backward/update pass.
--learning_rate LEARNING_RATE
The initial learning rate for Adam.
--weight_decay WEIGHT_DECAY
Weight decay if we apply some.
--adam_epsilon ADAM_EPSILON
Epsilon for Adam optimizer.
--max_grad_norm MAX_GRAD_NORM
Max gradient norm.
--num_train_epochs NUM_TRAIN_EPOCHS
Total number of training epochs to perform.
--max_steps MAX_STEPS
If > 0: set total number of training steps to perform.
Override num_train_epochs.
--warmup_steps WARMUP_STEPS
Linear warmup over warmup_steps.
--logging_dir LOGGING_DIR
Tensorboard log dir.
--logging_first_step Log and eval the first global_step
--logging_steps LOGGING_STEPS
Log every X updates steps.
--save_steps SAVE_STEPS
Save checkpoint every X updates steps.
--save_total_limit SAVE_TOTAL_LIMIT
Limit the total amount of checkpoints.Deletes the
older checkpoints in the output_dir. Default is
unlimited checkpoints
--no_cuda Do not use CUDA even when it is available
--seed SEED random seed for initialization
--fp16 Whether to use 16-bit (mixed) precision (through
NVIDIA apex) instead of 32-bit
--fp16_opt_level FP16_OPT_LEVEL
For fp16: Apex AMP optimization level selected in
['O0', 'O1', 'O2', and 'O3'].See details at
https://nvidia.github.io/apex/amp.html
--local_rank LOCAL_RANK
For distributed training: local_rank
--tpu_num_cores TPU_NUM_CORES
TPU: Number of TPU cores (automatically passed by
launcher script)
--tpu_metrics_debug TPU: Whether to print debug metrics
--use_mt_uncertainty Use MT-Uncertainty sampling method
Since our code is based on the huggingface implementation. All parameters are described in their documentation
License
MIT
How do I cite CA-MTL ?
@inproceedings{
pilault2021conditionally,
title={Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning in {\{}NLP{\}} Using Fewer Parameters {\&} Less Data},
author={Jonathan Pilault and Amine El hattami and Christopher Pal},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=de11dbHzAMF}
}
Contact and Contribution
For any question or request, please create a Github issue in this repository.