Home

Awesome

Bud Code Millenials

Welcome to our Code Model repository! Our model is specifically fine-tuned for code generation tasks. Bud Millenial Code Gen open-source models are currently the State of the Art (SOTA) for code generation, beating all the existing models of all sizes. We have achieved a HumanEval value of 80.48 @ Pass 1, beating proprietary models like Gemini Ultra, Claude, GPT-3.5 etc. by a large margin, and on par with GPT-4 (HumanEval ~ 82. Ref. WizardCoder). Our proprietary model (Bud Code Jr) beats GPT-4 as well with a HumanEval value of 88.2 & a context size of 168K, we will be releasing an API for Researchers, Enterprises, and potential Partners by January 2024 end. If interested, please reach out to jithinvg@bud.studio

News 🔥🔥🔥

HumanEval

<p align="center" width="100%"> <a ><img src="assets/result.png" alt="CodeMillenials" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a> </p> <p align="center" width="100%"> <a ><img src="assets/result-3b.png" alt="CodeMillenials" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a> </p>

For the millenial models, the eval script is used for the above result.

Note: The humaneval values of other models are taken from the official repos of WizardCoder, DeepseekCoder, Gemini etc.

Models

ModelCheckpointHumanEval (+)MBPP (+)
Code Millenials 34B<a href="https://huggingface.co/budecosystem/code-millenials-34b" target="_blank">HF Link</a>80.48 (75)74.68 (62.9)
Code Millenials 13B<a href="https://huggingface.co/budecosystem/code-millenials-13b" target="_blank">HF Link</a>76.21 (69.5)70.17 (57.6)
Code Millenials 3B<a href="https://huggingface.co/budecosystem/code-millenials-3b" target="_blank">HF Link</a>56.09 (52.43)55.13 (47.11)
Code Millenials 1B<a href="https://huggingface.co/budecosystem/code-millenials-1b" target="_blank">HF Link</a>51.82 (48.17)53.13 (44.61)

🚀 Quick Start

Inference code using the pre-trained model from the Hugging Face model hub

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("budecosystem/code-millenials-34b")
model = AutoModelForCausalLM.from_pretrained("budecosystem/code-millenials-34b")

template = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
### Instruction: {instruction} ### Response:"""

instruction = <Your code instruction here>

prompt = template.format(instruction=instruction)

inputs = tokenizer(prompt, return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0]))

Gradio Demo

python generate.py --base_model "budecosystem/code-millenials-34b"

Important Note