Home

Awesome

PWC

MedPromptX: Grounded Multimodal Prompting for Chest X-ray Diagnosis

Mai A. Shaaban, Adnan Khan, Mohammad Yaqub <img src='img/ORCIDiD_icon64x64.png' width='15'>

<img src='img/mbzuai_logo.png' width='100'> Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE

<img src='img/carleton_logo.png' width='100'> School of Computer Science, Carleton University, Ottawa, CA

Static Badge python pytorch

<hr>

MedPromptX

<hr>

:bulb: Highlights

:fire: News

:hammer_and_wrench: Install

Create environment:
conda create -n MedPromptX python=3.8

Install dependencies: (we assume GPU device / cuda available):

cd env

source install.sh

Now, you should be all set.

:arrow_forward: Demo

  1. Go to scripts/

  2. Run:

python main.py --model Med-Flamingo --prompt_type few-shot --modality multimodal --lang_encoder huggyllama/llama-7b --num_shots 6 --data_path prompts_6_shot --dps_type similarity --dps_modality both --vg True

:luggage: Checkpoints

Med-Flamingo

OpenFlamingo

LLaMA-7B

:black_nib: Citation

If you find our work helpful for your research, please consider citing the following BibTeX entry.

@article{shaaban2024medpromptx,
      title={MedPromptX: Grounded Multimodal Prompting for Chest X-ray Diagnosis}, 
      author={Mai A. Shaaban and Adnan Khan and Mohammad Yaqub},
      year={2024},
      url={https://arxiv.org/abs/2403.15585},
}

:hearts: Acknowledgement

Our code utilizes the following codebases: Med-Flamingo and GroundingDINO. We express gratitude to the authors for sharing their code and kindly request that you consider citing these works if you use our code.