Awesome
SBIR-DASE-MEMS
This is the source code of Paper P. Lu, G. Huang, H. Lin, et.al. Domain-Aware SE Network for Sketch-based Image Retrieval with Multiplicative Euclidean Margin Softmax. In Proc. ACM Multimedia 2021. [paper]
This code is tested on Ubuntu 16.04
with python 3.7
and pytorch 1.3.1
.
Framework
The framework of our model:
Datasets
-
Download
-
File Structure
- datasets |- anno |- data | |- TUBerlin | | |- photos | | | |- airplane | | | |- ... (other categories) | | |- sketches | | | |- airplane | | | |- ... (other categories) | | | |- sketchy | | |- photos | | | |- airplane | | | |- ... (other categories) | | |- sketches | | | |- airplane | | | |- ... (other categories) | |- Dataset.py |- ...
Demo Command
-
Train ResNeXt-101 with MEMS loss
# on TU-Berlin python main.py --save_path="tuberlin-resnext101-mems" --phase="train" --loss_type="mems" --margin=4 # on Sketchy python main.py --save_path="sketchy-resnext101-mems" --phase="train" --dataset="sketchy" --loss_type="mems" --margin=4
-
Using another loss
python main.py --save_path="tuberlin-resnext101-cosface" --phase="train" --loss_type="cosface" --margin=0.35 --scale=32 --test_distance="angular"
-
Using another network
python main.py --save_path="tuberlin-alexnet-mems" --phase="train" --network="alexnet" --loss_type="mems" --margin=2 --batch_size=400