Home

Awesome

TransUNet

This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

📰 News

@article{chen2024transunet,
  title={TransUNet: Rethinking the U-Net architecture design for medical image segmentation through the lens of transformers},
  author={Chen, Jieneng and Mei, Jieru and Li, Xianhang and Lu, Yongyi and Yu, Qihang and Wei, Qingyue and Luo, Xiangde and Xie, Yutong and Adeli, Ehsan and Wang, Yan and others},
  journal={Medical Image Analysis},
  pages={103280},
  year={2024},
  publisher={Elsevier}
}

Usage

1. Download Google pre-trained ViT models

wget https://storage.googleapis.com/vit_models/imagenet21k/{MODEL_NAME}.npz &&
mkdir ../model/vit_checkpoint/imagenet21k &&
mv {MODEL_NAME}.npz ../model/vit_checkpoint/imagenet21k/{MODEL_NAME}.npz

2. Prepare data (All data are available!)

All data are available so no need to send emails for data. Please use the BTCV preprocessed data and ACDC data.

3. Environment

Please prepare an environment with python=3.7, and then use the command "pip install -r requirements.txt" for the dependencies.

4. Train/Test

CUDA_VISIBLE_DEVICES=0 python train.py --dataset Synapse --vit_name R50-ViT-B_16
python test.py --dataset Synapse --vit_name R50-ViT-B_16

Reference

Citations

@article{chen2021transunet,
  title={TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation},
  author={Chen, Jieneng and Lu, Yongyi and Yu, Qihang and Luo, Xiangde and Adeli, Ehsan and Wang, Yan and Lu, Le and Yuille, Alan L., and Zhou, Yuyin},
  journal={arXiv preprint arXiv:2102.04306},
  year={2021}
}