Awesome
FPR
Code for paper "No-Reference Image Quality Assessment by Hallucinating Pristine Features". <img src="https://github.com/Baoliang93/FPR/blob/main/FPR_IQA/framework.png" width="800" height="433" >
Environment
- python=3.8.5
- pytorch=1.7.1 cuda=11.0.221 cudnn=8.0.5_0
Running
- Data Prepare
- Download the natural image (NI) datasets and screen content image (SCI) datasets into the path:
./FPR/datasets/
- We provide the pretrained checkpoints here. You can download it and put the included files into the path:
./FPR/FPR_IQA/FPR_NI/models/" or "./FPR/FPR_IQA/FPR_SCI/models/
.
- Train:
- For NI:
python ./FPR/FPR_IQA/FPR_SCI/src/iqaScrach.py --list-dir='../scripts/dataset_name/' --resume='../models/model_files/checkpoint_latest.pkl' --pro=split_id --dataset='dataloader_name'
- dataset_name: "tid2013", "databaserelease2", "CSIQ", or "kadid10k"
- model_files: "tid2013", "live", "csiq", or "kadid"
- dataloader_name: "IQA" (for live and csiq datasets), "TID2013", or "KADID"
- split_id: '0' to '9'
- For SCI:
- SIQAD:
python ./FPR/FPR_IQA/FPR_SCI/src/iqaScrach.py --pro=split_id
- SCID:
python ./FPR/FPR_IQA/FPR_SCI/src/scid-iqaScrach.py --pro=split_id
- SIQAD:
- For NI:
- Test:
- For NI:
python ./FPR/FPR_IQA/FPR_SCI/src/iqaTest.py --list-dir='../scripts/dataset_name/' --resume='../models/model_files/model_best.pkl' --pro=split_id --dataset='dataloader_name'
- For SCI:
- SIQAD:
python ./FPR/FPR_IQA/FPR_SCI/src/iqaTest.py --pro=split_id
- SCID:
python ./FPR/FPR_IQA/FPR_SCI/src/scid-iqaTest.py --pro=split_id
- SIQAD:
- For NI:
Details
- Waitting...