Awesome
Codes for AAAI 2024 paper "Finding Visual Saliency in Continuous Spike Stream"
This repository contains the official codes for AAAI 2024 paper Finding Visual Saliency in Continuous Spike Stream
.
Requirements
- torch >= 1.8.0
- torchvison >= 0.9.0
- ...
To installl requirements, run:
conda create -n svs python==3.7
pip install -r requirements.txt
Data Organization
SVS Dataset
Download the SVS[w2ba] dataset, then organize data as following format:
root_dir
SpikeData
|----00001
| |-----spike_label_format
| |-----spike_numpy
| |-----spike_repr
| |-----label
|----00002
| |-----spike_label_format
| |-----spike_numpy
| |-----spike_repr
| |-----label
|----...
Where label
contains the saliency labels, spike_numpy
contains the compress spike data, spike_repr
contains the interval spike representation, spike_label_format
contains instance labels.
Training
Training on SVS dataset
To train the model on SVS dataset, just modify the dataset root $cfg.DATA.ROOT
in config.py
, --step
is used for multi-step, --clip
is used for multi-step loss, then run following command:
python train.py --gpu ${GPU-IDS} --exp_name ${experiment} --step --clip
Testing
Download the model pretrained on SVS dataset multi_step[vn2x].
python inference.py --checkpoint ${./multi_step.pth} --results ${./results/SVS} --step
Download the model pretrained on SVS dataset single_step[scc0].
python inference.py --checkpoint ${./single_step.pth} --results ${./results/SVS}
The results will be saved as indexed png file at ${results}/SVS
.
Additionally, you can modify some setting parameters in config.py
to change configuration.
Acknowledgement
This codebase is built upon official DCFNet repository and official Spikformer repository. We modify the code from eval-co-sod to evaluate the results.