Awesome
Cross Hyperspectral and LiDAR Attention Transformer: An Extended Self-Attention for Land Use and Land Cover Classification
Swalpa Kumar Roy, Atri Sukul, Ali Jamali, Juan Mario Haut, and Pedram Ghamisi
The repository contains the implementations for Cross Hyperspectral and LiDAR Attention Transformer: An Extended Self-Attention for Land Use and Land Cover Classification
<img src="./model figs/model.jpg" width="800" height="450"/>Sample Dataset
Get the disjoint dataset (<a href="https://drive.google.com/folderview?id=1Wy939ZoRWqIRkPE7NBcndn1LhHTW9HQi" target="_blank">TrentoDataset</a> folder) from Google Drive.
Get the disjoint dataset (<a href="https://drive.google.com/folderview?id=1zn32OnII2DVVeJ2ypMaF71BfLJnlxMu3" target="_blank">HoustonDataset</a> folder) from Google Drive.
Get the disjoint dataset (<a href="https://drive.google.com/folderview?id=1xZx3kMGOc3MmA1GlgaHSTYE0fb3rWc4X" target="_blank">MUUFL_Dataset</a> folder) from Google Drive.
Citation
Please kindly cite the papers if this code is useful and helpful for your research.
@article{roy2022crosshl,
title={Cross Hyperspectral and LiDAR Attention Transformer: An Extended Self-Attention for Land Use and Land Cover Classification},
author={Roy, Swalpa Kumar and Sukul, Atri and Jamali, Ali and Haut, Juan Mario and Ghamisi, Pedram},
journal={IEEE Transactions on Geoscience and Remote Sensing},
volume = {},
year={2024},
doi = {}
}