Awesome
FGWMixup: Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications
This is the code for the paper: Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications, published in NeurIPS'23.
Paper link 🔗:
arXiv: https://arxiv.org/abs/2306.15963
OpenReview: https://openreview.net/forum?id=uqkUguNu40¬eId=0qcp06CFB6
Thanks for your interest in our work! If our work helps, please don't forget to cite us!🌟
@inproceedings{ma2023fused,
author = {Ma, Xinyu and Chu, Xu and Wang, Yasha and Lin, Yang and Zhao, Junfeng and Ma, Liantao and Zhu, Wenwu},
booktitle = {Advances in Neural Information Processing Systems},
pages = {15252--15276},
title = {Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications},
url = {https://proceedings.neurips.cc/paper_files/paper/2023/file/3173c427cb4ed2d5eaab029c17f221ae-Paper-Conference.pdf},
volume = {36},
year = {2023}
}
File Structure
-
./src/
: source codesgmixup_dgl.py
: Main python file to run FGWMixupgromov_mixup.py
: Conducting mixup of two samplesFGW_barycenter.py
: Calculating FGW barycenter and its accelerated versionmodels_dgl.py
: GNN architecturesutils_dgl.py
: Some utilities -
run_gmixup.sh
: sh command to run FGWMixup
Requirements
Suggested Enviornments:
- Python 3.9
- PyTorch 1.11.0
- DGL 1.0.2
- POT 0.8.2