Awesome
UWMMSE-MIMO
Tensorflow implementation of Deep Graph Unfolding for Beamforming in MU-MIMO Interference Networks (https://arxiv.org/abs/2304.00446)
Overview
This library contains a Tensorflow implementation of Deep Graph Unfolding for Beamforming in MU-MIMO Interference Networks as presented in [1](https://arxiv.org/abs/2304.00446).
Dependencies
- python>=3.6
- tensorflow>=1.14: https://tensorflow.org
- tensorflow_addons
- numpy
- matplotlib
Structure
- main: Main code for running the experiments in the paper. Run as python3 main.py --datasetID {dataset ID} --tx_antennas {T} --rx_antennas {R} --expID {exp ID} --mode {mode} --unrolled_layers {L}. For ex. to train UWMMSE on dataset with ID set3 having 5 tx and 3 rx antennas, run python3 main.py --datasetID set3 --tx_antennas 5 --rx_antennas 3 --expID uwmmse --mode train --unrolled_layers 1. For best results, train with 1 unrolled layer and use atleast 3 unrolled layers at inference.
- model: Defines the UWMMSE model.
- data: should contain your dataset in folder {dataset ID}.
- models: Stores trained models in a folder with same name as {datset ID}.
- results: Stores results in a folder with same name as {datset ID}.
Usage
Please cite [1] in your work when using this library in your experiments.
Feedback
For questions and comments, feel free to contact Arindam Chowdhury.
Citation
[1] Chowdhury A, Verma G, Swami A, Segarra S. Deep Graph Unfolding for Beamforming in MU-MIMO Interference Networks.
arXiv preprint arXiv:2304.00446 2023 Apr 02.
BibTeX format:
@article{chowdhury2023deep,
title={Deep Graph Unfolding for Beamforming in MU-MIMO Interference Networks},
author={Chowdhury, Arindam and Verma, Gunjan and Swami, Ananthram and Segarra, Santiago},
journal={arXiv e-prints},
year={2023}
}