Awesome
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification
This repository provides testing code and models of #2775.
Requirements
Installation
python setup.py install
Prepare Datasets
Download the person datasets DukeMTMC-reID, Market-1501, MSMT17. Then unzip them under the directory like
HCD/data
├── dukemtmc
│ └── DukeMTMC-reID
├── market1501
│ └── Market-1501-v15.09.15
└── msmt17
└── MSMT17_V1
Evaluation
Unsupervised Domain Adaptation
To evaluate the model on the target-domain dataset, run:
CUDA_VISIBLE_DEVICES=0 python test.py --dsbn -d $DATASET --resume $PATH_MODEL
Example: DukeMTMC-reID -> Market-1501
CUDA_VISIBLE_DEVICES=0 python test.py --dsbn -d market1501 --resume uda_duke2market.pth.tar
Unsupervised Learning
To evaluate the model, run:
CUDA_VISIBLE_DEVICES=0 python test.py -d $DATASET --resume $PATH
Example: DukeMTMC-reID
CUDA_VISIBLE_DEVICES=0 python test.py -d dukemtmc --resume usl_duke.pth.tar
Trained Models
You can download models in the paper from Google Drive.