Awesome
Meta-CoT
Meta-CoT is a generalizable CoT prompting method in mixed-task scenarios where the type of input questions is unknown. It consists of three phases: (i) scenario identification: categorizes the scenario of the input question; (ii) demonstration selection: fetches the ICL demonstrations for the categorized scenario; (iii) answer derivation: performs the answer inference by feeding the LLM with the prompt comprising the fetched ICL demonstrations and the input question.
Requirements
Install all required python dependencies:
pip install -r requirements.txt
Datasets
Download the datasets from the following repository and put them under ./dataset
and ./log
:
https://github.com/kojima-takeshi188/zero_shot_cot/tree/main/dataset
https://github.com/kojima-takeshi188/zero_shot_cot/tree/main/log
Implementations
Input your own openai api key in llm_utils.py
.
Mixed Data Preprocessing
python mixed_preprocessing.py \
--input_style que \
--output_style cat-form
#if you want to run preliminary experiments for scenario identification, you can set run_test to True.
Demos Construction
python demos_inference.py \
--demo_sampling_method diversity \
--output_style cat-form
Run Inference
python run.py
Citing Meta-CoT
@article{zou2023metacot,
title={Meta-CoT: Generalizable Chain-of-Thought Prompting in Mixed-task Scenarios with Large Language Models},
author={Anni Zou and Zhuosheng Zhang and Hai Zhao and Xiangru Tang},
journal={arXiv preprint arXiv:2310.06692},
year={2023}
}