Awesome
LAFB
Code repository for our paper entilted "Learning Adaptive Fusion Bank for Multi-modal Salient Object Detection" accepted at TCSVT 2024.
arXiv version: https://arxiv.org/abs/2406.01127.
24.7.19. The prediction results and weights based on VGG and ResNet backbones have been updated in the Baidu network disk link below.
Citing our work
If you think our work is helpful, please cite
@article{wang2024learning,
title={Learning Adaptive Fusion Bank for Multi-modal Salient Object Detection},
author={Wang, Kunpeng and Tu, Zhengzheng and Li, Chenglong and Zhang, Cheng and Luo, Bin},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
year={2024},
publisher={IEEE}
}
Overview
Framework
RGB-D SOD Performance
RGB-T SOD Performance
Data Preparation
RGB-D and RGB-T SOD datasets can be found here. [baidu pan fetch code: chjo]
Predictions
Saliency maps can be found here. [baidu pan fetch code: uodf] or [google drive]
Pretrained Models
Pretrained parameters can be found here.[baidu pan fetch code: 3ed6] or [google drive]
Usage
Prepare
- Create directories for the experiment and parameter files.
- Please use
conda
to installtorch
(1.12.0) andtorchvision
(0.13.0). - Install other packages:
pip install -r requirements.txt
. - Set your path of all datasets in
./Code/utils/options.py
.
Train
python train.py
Test
python test_produce_maps.py
Contact
If you have any questions, please contact us (kp.wang@foxmail.com).