Awesome
pyhts
A python package for hierarchical forecasting, inspired by the hts package in R.
Features
- Support pupular forecast reconciliation models in the literature, e.g. ols, wls, mint et al. Forecasting with temporal hierarchies will be supported in the future.
- Multiple methods for the construction of hierarchy.
- Use different base forecasters for different hierarchical levels.
- Sklearn-like API.
Quick Demo
- Load the Australia tourism flows data.
from pyhts import load_tourism
tourism_data = load_tourism()
train = tourism_data.iloc[:, 4:-12].T.values
test = tourism_data.iloc[:, -12:].T.values
- Define the hierarchy.
from pyhts import Hierarchy
hierarchy = Hierarchy.new(tourism_data, [('state', 'region', 'city')])
print(hierarchy.node_name)
- Create an ols forecasting reconciliation model with sklearn-like API.
from pyhts import HFModel
model_ols = HFModel(hierarchy=hierarchy, base_forecasters="arima",
hf_method="comb", comb_method="ols")
- Fit the model and produce forecasts.
model_ols.fit(train)
ols = model_ols.predict(horizon=12)
-
model.fit()
fits thebaseforecasters
and computes the weighting matrix used to reconcile the base forecasts. -
model.predict()
calculates the base forecasts for all levels and reconciles the base forecasts.
- Obtain coherent forecasts of all the hierarchical levels.
all_level_ols = hierarchy.aggregate_ts(ols)
- fit other methods using fitted base forecasters
model_wlss = HFModel(hierarchy, base_forecasters=model_ols.base_forecasters,
hf_method="comb", comb_method="wls", weights="structural")
model_wlss.fit(train)
wlss = model_wlss.predict(horizon=12)
model_wlsv = HFModel(hierarchy, base_forecasters=model_ols.base_forecasters,
hf_method="comb", comb_method="mint", weights="variance")
model_wlsv.fit(train)
wlsv = model_wlsv.predict(horizon=12)
model_shrink = HFModel(hierarchy, base_forecasters=model_ols.base_forecasters,
hf_method="comb", comb_method="mint", weights="shrinkage")
model_shrink.fit(train)
shrink = model_shrink.predict(horizon=12)
- Evaluate the forecasting accuracy.
# accuracy of reconciled forecasts
accuracy = [hierarchy.accuracy(test, fcast, hist=train, measure=['mase', 'rmse'])
for fcast in (ols, wlss, wlsv, shrink)]
# accuracy of base forecasts
base_forecasts = model_ols.generate_base_forecast(horizon=12)
accuracy_base = hierarchy.accuracy_base(test, base_forecasts, hist=train, measure=['mase', 'rmse'])
Because of the incoherence of base forecasts, base_forecasts
are forecasts of all time series in the hierarchy, while coherent forecasts
are forecasts of the bottom-level time series.
Documentation
See documentation here.