Home

Awesome

MOSE

Official implementation of MOSE for online continual learning (CVPR2024).

Introduction

MOSE

Multi-level Online Sequential Experts (MOSE) cultivates the model as stacked sub-experts, integrating multi-level supervision and reverse self-distillation. Supervision signals across multiple stages facilitate appropriate convergence of the new task while gathering various strengths from experts by knowledge distillation mitigates the performance decline of old tasks.

Usage

Requirements

pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html
pip install -r requirements.txt

Training and Testing

Split CIFAR-100

python main.py \
--dataset           cifar100 \
--buffer_size       5000 \
--method            mose \
--seed              0 \
--run_nums          5 \
--gpu_id            0

Split TinyImageNet

python main.py \
--dataset           tiny_imagenet \
--buffer_size       10000 \
--method            mose \
--seed              0 \
--run_nums          5 \
--gpu_id            0

Acknowledgement

Thanks the following code bases for their framework and ideas:

Citation

If you found this code or our work useful, please cite us:

@inproceedings{yan2024orchestrate,
  title={Orchestrate Latent Expertise: Advancing Online Continual Learning with Multi-Level Supervision and Reverse Self-Distillation},
  author={Yan, Hongwei and Wang, Liyuan and Ma, Kaisheng and Zhong, Yi},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={23670--23680},
  year={2024}
}

Contact

If you have any questions or concerns, please feel free to contact us or leave an issue: