Home

Awesome

Light CNN for Deep Face Recognition, in PyTorch

A PyTorch implementation of A Light CNN for Deep Face Representation with Noisy Labels from the paper by Xiang Wu, Ran He, Zhenan Sun and Tieniu Tan. The official and original Caffe code can be found here.

Table of Contents

Updates

Installation

Datasets

Training

python train.py --root_path=/path/to/your/datasets/ \
		--train_list=/path/to/your/train/list.txt \
		--val_list=/path/to/your/val/list.txt \
		--save_path=/path/to/your/save/path/ \
		--model="LightCNN-9/LightCNN-29" --num_classes=n

Evaluation

python extract_features.py --resume=/path/to/your/model \
			   --root_path=/path/to/your/datasets/ \
			   --img_list=/path/to/your/list.txt \
			   --save_path=/path/to/your/save/path/ \
			   --model="LightCNN-9/LightCNN-29/LightCNN-29v2"\
			   --num_classes=n (79077 for LightCNN-9/LightCNN-29, 80013 for LightCNN-29v2)

Performance

The Light CNN performance on lfw 6,000 pairs.

Model100% - EERTPR@FAR=1%TPR@FAR=0.1%TPR@FAR=0
LightCNN-998.70%98.47%95.13%89.53%
LightCNN-2999.40%99.43%98.67%95.70%
LightCNN-29v299.43%99.53%99.30%96.77%
LightCNN v499.67%99.67%99.57%99.27%

The Light CNN performance on lfw BLUFR protocols

ModelVR@FAR=0.1%DIR@FAR=1%
LightCNN-996.80%83.06%
LightCNN-2998.95%91.33%
LightCNN-29v299.41%94.43%

The Light CNN performance on MegaFace

ModelRank-1TPR@FAR=1e-6
LightCNN-965.782%76.288%
LightCNN-2972.704%85.891%
LightCNN-29v276.021%89.740%

Citation

If you use our models, please cite the following paper:

@article{wu2018light,
  title={A light CNN for deep face representation with noisy labels},
  author={Wu, Xiang and He, Ran and Sun, Zhenan and Tan, Tieniu},
  journal={IEEE Transactions on Information Forensics and Security},
  volume={13},
  number={11},
  pages={2884--2896},
  year={2018},
  publisher={IEEE}
}

References