Awesome
DUE
This repo is for DUE: Dynamic Uncertainty-Aware Explanation Supervision via 3D Imputation
<img src="https://github.com/AlexQilong/DUE/blob/main/assets/framework_overview.png" alt="due_overview" style="width:70%;">Setup
Please refer to requirements.txt
Implementation
- Train a diffusion model for slice interpolation
- Interpolate annotation slices repeatly using the diffusion model to estimate uncertainty
- Train a VAE to directly estimate uncertainty
- Set paths and run:
python main.py --model "due" --dataset $DATASET --attention_weight 1 --seed 0
Deployment
Below are screenshots illustrating the deployment of DUE, using lung nodule classification as an example:
1. Visual Annotation Labeling Interface
The screenshots below display the interface for labeling visual annotations. Radiologists can annotate images by drawing on them, generating a binary matrix of the focus area. This process contributes to enhancing the quality of model explanations.
<img src="https://github.com/AlexQilong/DUE/blob/main/assets/screenshot_cancer_1.png" style="width:100%;"> <img src="https://github.com/AlexQilong/DUE/blob/main/assets/screenshot_cancer_2.png" style="width:100%;">2. Model Selection Interface
Here is the interface for selecting the model, where users can choose from trained model checkpoints.
<img src="https://github.com/AlexQilong/DUE/blob/main/assets/screenshot_model_select.png" style="width:80%;">