Home

Awesome

<div align="center"> <p align="center"> <img src="https://images.squarespace-cdn.com/content/v1/57f6d51c9f74566f55ecf271/1628250004229-KVYD7JJVHYEFDJ32L9VJ/DLClogo2021.jpg?format=1000w" width="95%"> </p> <p align="center"> <img src="https://images.squarespace-cdn.com/content/v1/57f6d51c9f74566f55ecf271/1665060917309-V0YVY2UKVLKSS6O18XDI/MousereachGIF.gif?format=1000w?format=180w" height="150"> <img src="https://images.squarespace-cdn.com/content/v1/57f6d51c9f74566f55ecf271/daed7f16-527f-4150-8bdd-cbb20e267451/cheetah-ezgif.com-video-to-gif-converter.gif?format=180w" height="150"> <img src="https://images.squarespace-cdn.com/content/v1/57f6d51c9f74566f55ecf271/1534797521117-EIEUED03C68241QZ4KCK/ke17ZwdGBToddI8pDm48kAx9qLOWpcHWRGxWsJQSczRZw-zPPgdn4jUwVcJE1ZvWQUxwkmyExglNqGp0IvTJZUJFbgE-7XRK3dMEBRBhUpwdr4GYy30vFzf31Oe7KAPZKkqgaiEgc5jBNdhZmDPlzxdkDSclo6ofuXZm6YCEhUo/MATHIS_2018_fly.gif?format=180w" height="150"> <img src="https://images.squarespace-cdn.com/content/v1/57f6d51c9f74566f55ecf271/1619609897110-TKSTWKEM6HTGXID9D489/ke17ZwdGBToddI8pDm48kAvjv6tW_eojYQmNU0ncbllZw-zPPgdn4jUwVcJE1ZvWEtT5uBSRWt4vQZAgTJucoTqqXjS3CfNDSuuf31e0tVHBSTXHtjUKlhRtWJ1Vo6l1B2bxJtByvWSjL6Vz3amc5yb8BodarTVrzIWCp72ioWw/triMouseDLC.gif?format=180w" height="150">

📚Documentation | 🛠️ Installation | 🌎 Home Page | 🐿🐴🐁🐘🐆 Model Zoo | 🚨 News | 🪲 Reporting Issues

🫶 Getting Assistance | ∞ DeepLabCut Online Course | 📝 Publications | 👩🏾‍💻👨‍💻 DeepLabCut AI Residency

Vesion Downloads Downloads PyPI version Python package License: LGPL v3 <a href="https://github.com/psf/black"><img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-000000.svg"></a> GitHub stars Average time to resolve an issue Percentage of issues still open Image.sc forum Gitter Twitter Follow Generic badge CZI's Essential Open Source Software for Science

</div>

Welcome! 👋

DeepLabCut™️ is a toolbox for state-of-the-art markerless pose estimation of animals performing various behaviors. As long as you can see (label) what you want to track, you can use this toolbox, as it is animal and object agnostic. Read a short development and application summary below.

Installation: how to install DeepLabCut

Please click the link above for all the information you need to get started! Please note that currently we support only Python 3.10+ (see conda files for guidance).

Developers Stable Release:

Developers Alpha Release:

We recommend using our conda file, see here or the new deeplabcut-docker package.

Documentation: The DeepLabCut Process

Our docs walk you through using DeepLabCut, and key API points. For an overview of the toolbox and workflow for project management, see our step-by-step at Nature Protocols paper.

For a deeper understanding and more resources for you to get started with Python and DeepLabCut, please check out our free online course! http://DLCcourse.deeplabcut.org

<p align="center"> <img src="https://images.squarespace-cdn.com/content/v1/57f6d51c9f74566f55ecf271/1609244903687-US1SN063QIFJS4BP4IJD/ke17ZwdGBToddI8pDm48kFG9xAYub2PPnmh56PTVg7gUqsxRUqqbr1mOJYKfIPR7LoDQ9mXPOjoJoqy81S2I8N_N4V1vUb5AoIIIbLZhVYxCRW4BPu10St3TBAUQYVKcAju5e7u9RZJEVbVQPZRu9xb_m-kUO2M3I1IeDqD4l8YcGqu2nZPx1UhKV8wc1ELN/dlc_overview_whitebkgrnd.png?format=2500w" width="95%"> </p>

DEMO the code

🐭 pose tracking of single animals demo Open in Colab

🐭🐭🐭 pose tracking of multiple animals demo Open in Colab

Why use DeepLabCut?

In 2018, we demonstrated the capabilities for trail tracking, reaching in mice and various Drosophila behaviors during egg-laying (see Mathis et al. for details). There is, however, nothing specific that makes the toolbox only applicable to these tasks and/or species. The toolbox has already been successfully applied (by us and others) to rats, humans, various fish species, bacteria, leeches, various robots, cheetahs, mouse whiskers and race horses. DeepLabCut utilized the feature detectors (ResNets + readout layers) of one of the state-of-the-art algorithms for human pose estimation by Insafutdinov et al., called DeeperCut, which inspired the name for our toolbox (see references below). Since this time, the package has changed substantially. The code has been re-tooled and re-factored since 2.1+: We have added faster and higher performance variants with MobileNetV2s, EfficientNets, and our own DLCRNet backbones (see Pretraining boosts out-of-domain robustness for pose estimation and Lauer et al 2022). Additionally, we have improved the inference speed and provided both additional and novel augmentation methods, added real-time, and multi-animal support. In v3.0+ we have changed the backend to support PyTorch. This brings not only an easier installation process for users, but performance gains, developer flexibility, and a lot of new tools! Importantly, the high-level API stays the same, so it will be a seamless transition for users 💜! We currently provide state-of-the-art performance for animal pose estimation and the labs (M. Mathis Lab and A. Mathis Group) have both top journal and computer vision conference papers.

<p align="center"> <img src="https://static1.squarespace.com/static/57f6d51c9f74566f55ecf271/t/5c3e47258a922d548c483247/1547585339819/ErrorvsTrainingsetSize.png?format=750w" height="160"> <img src="https://static1.squarespace.com/static/57f6d51c9f74566f55ecf271/t/5c3e469d8a922d548c4828fa/1547585194560/compressionrobustness.png?format=750w" height="160"> <img src="https://static1.squarespace.com/static/57f6d51c9f74566f55ecf271/t/5c3fbed74fa51acecd63deeb/1547681534736/MouseLocomotion_warren.gif?format=500w" height="160"> <img src="https://static1.squarespace.com/static/57f6d51c9f74566f55ecf271/t/5c3fc1c6758d46950ce7eec7/1547682383595/cheetah.png?format=750w" height="160"> </p>

Left: Due to transfer learning it requires little training data for multiple, challenging behaviors (see Mathis et al. 2018 for details). Mid Left: The feature detectors are robust to video compression (see Mathis/Warren for details). Mid Right: It allows 3D pose estimation with a single network and camera (see Mathis/Warren). Right: It allows 3D pose estimation with a single network trained on data from multiple cameras together with standard triangulation methods (see Nath* and Mathis* et al. 2019).

DeepLabCut is embedding in a larger open-source eco-system, providing behavioral tracking for neuroscience, ecology, medical, and technical applications. Moreover, many new tools are being actively developed. See DLC-Utils for some helper code.

<p align="center"> <img src="https://images.squarespace-cdn.com/content/v1/57f6d51c9f74566f55ecf271/1588292233203-FD1DVKAQYNV2TU91CO7R/ke17ZwdGBToddI8pDm48kIX24IsDPzy6M4KUaihfICJZw-zPPgdn4jUwVcJE1ZvWQUxwkmyExglNqGp0IvTJZamWLI2zvYWH8K3-s_4yszcp2ryTI0HqTOaaUohrI8PIxtGUdkzp028KVNnpOijF3PweOM5su6FUQHO6Wkh72Nw/dlc_eco.gif?format=1000w" width="80%"> </p>

Code contributors:

DLC code was originally developed by Alexander Mathis & Mackenzie Mathis, and was extended in 2.0 with the core dev team consisting of Tanmay Nath (2.0-2.1), and currently (2.1+) with Jessy Lauer and (2.3+) Niels Poulsen. DeepLabCut is an open-source tool and has benefited from suggestions and edits by many individuals including Mert Yuksekgonul, Tom Biasi, Richard Warren, Ronny Eichler, Hao Wu, Federico Claudi, Gary Kane and Jonny Saunders as well as the 100+ contributors. Please see AUTHORS for more details!

This is an actively developed package and we welcome community development and involvement.

Get Assistance & be part of the DLC Community✨:

🚉 Platform🎯 Goal⏱️ Estimated Response Time📢 Support Squad
Image.sc forum <br /> 🐭Tag: DeepLabCutTo ask help and support questions👋Promptly🔥DLC Team and The DLC Community
GitHub DeepLabCut/IssuesTo report bugs and code issues🐛 (we encourage you to search issues first)2-3 daysDLC Team
GitterTo discuss with other users, share ideas and collaborate💡2 daysThe DLC Community
GitHub DeepLabCut/ContributingTo contribute your expertise and experience🙏💯Promptly🔥DLC Team
🚧 GitHub DeepLabCut/RoadmapTo learn more about our journey✈️N/AN/A
Twitter FollowTo keep up with our latest news and updates 📢DailyDLC Team
The DeepLabCut AI Residency ProgramTo come and work with us next summer👏AnnuallyDLC Team

References & Citations:

Please see our dedicated page on how to cite DeepLabCut 🙏 and our sugestions for your Methods section!

License:

This project is primarily licensed under the GNU Lesser General Public License v3.0. Note that the software is provided "as is", without warranty of any kind, express or implied. If you use the code or data, please cite us! Note, artwork (DeepLabCut logo) and images are copyrighted; please do not take or use these images without written permission.

SuperAnimal models are provided for research use only (non-commercial use).

Major Versions:

VERSION 3.0: A whole new experience with PyTorch🔥. While the high-level API remains the same, the backend and developer friendliness have greatly improved, along with performance gains!

VERSION 2.3: Model Zoo SuperAnimals, and a whole new GUI experience.

VERSION 2.2: Multi-animal pose estimation, identification, and tracking with DeepLabCut is supported (as well as single-animal projects).

VERSION 2.0-2.1: This is the Python package of DeepLabCut that was originally released in Oct 2018 with our Nature Protocols paper (preprint here). This package includes graphical user interfaces to label your data, and take you from data set creation to automatic behavioral analysis. It also introduces an active learning framework to efficiently use DeepLabCut on large experimental projects, and data augmentation tools that improve network performance, especially in challenging cases (see panel b).

VERSION 1.0: The initial, Nature Neuroscience version of DeepLabCut can be found in the history of git, or here: https://github.com/DeepLabCut/DeepLabCut/releases/tag/1.11

News (and in the news):

:purple_heart: We released a major update, moving from 2.x --> 3.x with the backend change to PyTorch

:purple_heart: The DeepLabCut Model Zoo launches SuperAnimals, see more here.

:purple_heart: DeepLabCut supports multi-animal pose estimation! maDLC is out of beta/rc mode and beta is deprecated, thanks to the testers out there for feedback! Your labeled data will be backwards compatible, but not all other steps. Please see the new 2.2+ releases for what's new & how to install it, please see our new paper, Lauer et al 2022, and the new docs on how to use it!

:purple_heart: We support multi-animal re-identification, see Lauer et al 2022.

:purple_heart: We have a real-time package available! http://DLClive.deeplabcut.org