Home

Awesome

Slim-neck by GSConv: a lightweight-design for real-time detector architectures

🎉🎉🎉NEW WORK! -> [ECCV2024] Rethinking Features-Fused-Pyramid-Neck for Object Detection

English | 简体中文 <br>

<p align="center"> <img src="gsconvdet.png" alt="" width="800" /> </p> Datasets: <br /> - PASCAL VOC 2007+12 <br /> - WiderPerson <br /> - SODA10M (for autonomous vehicles) <br /> - DOTA1.0 <br />(We only provide the train/val/test.txt file we used so that you can reproduce our results. The images & labels can be found on the official websites of these datasets.) --- ### An example of comparison on remote sensing images

scaled-yolov4

<p align="center"> <img src="remote-scaledv4.jpg" alt="" width="800" /> </p>

slim neck scaled-yolov4

<p align="center"> <img src="sm-remote-scaledv4.jpg" alt="" width="800" /> </p>

Training the custom datasets

1. For GSConv-yolov5

(Updated July 14th)

git clone https://github.com/AlanLi1997/slim-neck-by-gsconv.git
cd slim-neck-by-gsconv/gsconv-yolov5
pip install requirements.txt
python train.py --cfg models/sm-yolov5s.yaml

2. For GSConv-scaled_yolov4

(Updated Aug 17th)

git clone https://github.com/AlanLi1997/slim-neck-by-gsconv.git
cd slim-neck-by-gsconv
pip install requirements.txt
cd gsconv-scaled-yolov4
python train.py --cfg models/sm-yolov4-p5.yaml

Pretrained Checkpoints

MS COCO

Modelsize<br><sup>(pixels)mAP<sup>val<br>0.5:0.95mAP<sup>val<br>0.5FPS<br><sup>T4 b1<br>FPS<br><sup>T4 b32<br>params<br><sup>(M)FLOPs<br><sup>@640 (G)
yolov5n(ultralytics)64028.045.7----1.94.5
GSyolov5n64028.4(+0.4)47.0(+1.3)1472071.84.0
Modelsize<br><sup>(pixels)mAP<sup>val<br>0.5:0.95mAP<sup>val<br>0.5FPS<br><sup>A40 b1<br>FPS<br><sup>A40 b32<br>params<br><sup>(M)FLOPs<br><sup>@640 (G)
yolov5s64035.754.31092977.216.4
GSyolov5s64036.0(+0.3)54.295312(+15)7.014.5

Testing the slim-neck detectors

1. For GSConv-yolov5

cd gsconv-yolov5
python val.py --data yourdata.yaml --weights sm-yolov5s.pt --task test

2. For GSConv-scaled-yolov4

cd gsconv-scaled-yolov4
python val.py --data yourdata.yaml --weights sm-yolov4-p5.pt --task test

References

Citation

@article{li2024slim,<br /> title={Slim-neck by GSConv: a lightweight-design for real-time detector architectures},<br /> author={Li, Hulin and Li, Jun and Wei, Hanbing and Liu, Zheng and Zhan, Zhenfei and Ren, Qiliang},<br /> journal={Journal of Real-Time Image Processing},<br /> volume={21},<br /> number={3},<br /> pages={62},<br /> year={2024},<br /> publisher={Springer}<br /> }