Home

Awesome

<div align="center"> <img src="https://github.com/Akegarasu/lora-scripts/assets/36563862/3b177f4a-d92a-4da4-85c8-a0d163061a40" width="200" height="200" alt="SD-Trainer" style="border-radius: 25px">

SD-Trainer

✨ Enjoy Stable Diffusion Train! ✨

</div> <p align="center"> <a href="https://github.com/Akegarasu/lora-scripts" style="margin: 2px;"> <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/Akegarasu/lora-scripts"> </a> <a href="https://github.com/Akegarasu/lora-scripts" style="margin: 2px;"> <img alt="GitHub forks" src="https://img.shields.io/github/forks/Akegarasu/lora-scripts"> </a> <a href="https://raw.githubusercontent.com/Akegarasu/lora-scripts/master/LICENSE" style="margin: 2px;"> <img src="https://img.shields.io/github/license/Akegarasu/lora-scripts" alt="license"> </a> <a href="https://github.com/Akegarasu/lora-scripts/releases" style="margin: 2px;"> <img src="https://img.shields.io/github/v/release/Akegarasu/lora-scripts?color=blueviolet&include_prereleases" alt="release"> </a> </p> <p align="center"> <a href="https://github.com/Akegarasu/lora-scripts/releases">Download</a> · <a href="https://github.com/Akegarasu/lora-scripts/blob/main/README.md">Documents</a> · <a href="https://github.com/Akegarasu/lora-scripts/blob/main/README-zh.md">中文README</a> </p>

LoRA-scripts (a.k.a SD-Trainer)

LoRA & Dreambooth training GUI & scripts preset & one key training environment for kohya-ss/sd-scripts

✨NEW: Train WebUI

The REAL Stable Diffusion Training Studio. Everything in one WebUI.

Follow the installation guide below to install the GUI, then run run_gui.ps1(windows) or run_gui.sh(linux) to start the GUI.

image

TensorboardWD 1.4 TaggerTag Editor
imageimageimage

Usage

Required Dependencies

Python 3.10 and Git

Clone repo with submodules

git clone --recurse-submodules https://github.com/Akegarasu/lora-scripts

✨ SD-Trainer GUI

Windows

Installation

Run install.ps1 will automatically create a venv for you and install necessary deps. If you are in China mainland, please use install-cn.ps1

Train

run run_gui.ps1, then program will open http://127.0.0.1:28000 automanticlly

Linux

Installation

Run install.bash will create a venv and install necessary deps.

Train

run bash run_gui.sh, then program will open http://127.0.0.1:28000 automanticlly

Legacy training through run script manually

Windows

Installation

Run install.ps1 will automatically create a venv for you and install necessary deps.

Train

Edit train.ps1, and run it.

Linux

Installation

Run install.bash will create a venv and install necessary deps.

Train

Training script train.sh will not activate venv for you. You should activate venv first.

source venv/bin/activate

Edit train.sh, and run it.

TensorBoard

Run tensorboard.ps1 will start TensorBoard at http://localhost:6006/

Program arguments

Parameter NameTypeDefault ValueDescription
--hoststr"127.0.0.1"Hostname for the server
--portint28000Port to run the server
--listenboolfalseEnable listening mode for the server
--skip-prepare-environmentboolfalseSkip the environment preparation step
--disable-tensorboardboolfalseDisable TensorBoard
--disable-tageditorboolfalseDisable tag editor
--tensorboard-hoststr"127.0.0.1"Host to run TensorBoard
--tensorboard-portint6006Port to run TensorBoard
--localizationstrLocalization settings for the interface
--devboolfalseDeveloper mode to disale some checks