Home

Awesome

AI for Copernicus - a data repository by CALLISTO

A list of datasets aiming to enable Artificial Intelligence applications that use Earth Observation, satellite and other data.

It will be continuously enhanced with more datasets, and we are also aiming to trigger innovation by matching each one with papers and implementations that we consider relevant and could be used together in future work!

We strongly encourage the community to provide contributions through pull requests!

<!-- ### Table of contents * [Callisto Generated Datasets](#callisto_generated) 1. [Annotated street-level images from Mapillary](#annotated_street_level_mapillary) 2. [Paddy Rice Maps South Korea (2017~2021)](#paddy_rice_south_korea_2017_2021) 3. [Paddy Rice Labeling Sites in South Korea (2018)](#paddy_rice_labelling_south_korea_2018) 4. [Ontology and Geospatial Knowledge Graph in RDF format (2023)](#ontology_KG_rdf) 5. [Syntactic Geospatial data generated in RDF format (2022)](#syntatic_genereted data_rdf) * [Existing Datasets](#existing) 1. [Analysis Ready Sentinel Data ](#analysis_ready_sentinel) 1. [EarthNet2021 dataset](#earthnet_2021) 2. [BigEarthNet dataset](#bigearthnet_2021) 3. [So2Sat](#so2sat) 4. [EuroSAT dataset](#eurosat) 5. [Sen12MS](#sen12ms) 6. [SAT-4](#sat4) 7. [SAT-6](#sat6) 2. [Crop Classification Datasets](#crop_classification_datasets) 1. [ZueriCrop](#zuericrop) 2. [CV4A_Kenya](#cv4a_kenya) 3. [TimeSen2Crop](#timesen2crop) 4. [Sen4AgriNet](#sen4agrinet) 5. [BreizhCrops](#breizhcrops) 6. [Crop Type Mapping - Semantic Segmentation Datasets in Ghana](#crop_type_mapping_semantic_segmentation_ghana) 7. [CaneSat](#canesat) 8. [Spot the Crop Challenge](#spot_the_crop_challenge) 9. [Denethor](#denethor) 3. [Ancillary Crop Related Annotated Datasets](#ancillary_crop_related_annotated) 1. [Crop Deep](#crop_deep) 2. [PlantVillage - Healthy and unhealthy leaf images](#plant_village) 3. [iCrop - Street-level Imagery for Crop Classification](#icrop) 4. [Other Annotated Datasets](#other_annotated) 1. [Sen1Floods11](#sen1floods11) 2. [Labeled SAR imagery dataset of ten geophysical phenomena from Sentinel-1 wave mode (TenGeoP-SARwv)](#labelled_sar_geophysical) 3. [Hand-labelled Crop/No-Crop dataset](#hand_labelled_crop_no-crop) 4. [Open VHR images and geospatial data (Netherlands)](#open_vhr_images_and_geospatial_netherlands) - [Land Parcel Identification Systems (LPIS)](#lpis_netherlands) - [Reference Parcels](#reference_parcels_netherlands) - [Orthoimages (Web Service)](#orthoimages_netherlands) - [Lidar data (Current Altitude Data)](#lidar_data_netherlands) - [Soil Data (physical characteristics)](#soil_data_physical_netherlands) - [VHR Satellite Data](#vhr_satellite_netherlands) 5. [Land Cover Map (Korean Ministry of Environment)](#land_cover_map_korea_environment) 6. [Farm Map (Korean Ministry of Agriculture, Food and Rural Affairs)](#farm_map_korea_agriculture) 5. [Web Application / Websites with labelled data](#web_application_websites_labelled_data) 1. [Mapillary Street Level Images](#mapillary_web) 2. [Eden Library](#eden_library) 6. [UAV/Aerial Imagery](#uav_aerial_imagery) 1. [Open Aerial Map - UAV Imagery](#open_aerial_map_uav) 2. [VisDrone dataset](#visdrone) 3. [Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture](#agriculture_vision_challenges_opportunities) 4. [AU-AIR Dataset](#auair) 5. [UAV-based Multispectral & Thermal dataset for exploring the diurnal variability & geometric accuracy for precision agriculture](#uav_diurnal_variability) 6. [senseFly Datasets](#sensefly) 7. [A Crop/Weed Field Image Dataset (CWFID)](#crop_weed_field_image) 8. [LandCover.ai](#landcoverai) 7. [Crop phenology annotated datasets](#crop_phenology_annotated) 1. [DWD_RECENT](#dwd_recent) 2. [DWD_ARCHIVE](#dwd_archive) 3. [PEP725](#pep725) 8. [European Projects](#eu_projects) 1. [NextGEOSS Data Catalog (DaaS)](#nextgeoss_daas) 2. [Geocradle Data Catalog (Daas)](#geocradle_daas) 3. [Copernicus](#copernicus_all) - [COPERNICUS ATMOSPHERE MONITORING SERVICE (CAMS)](#copernicus_cams) - [COPERNICUS CLIMATE CHANGE SERVICE (C3S)](#copernicus_c3s) - [COPERNICUS LAND MONITORING SERVICE (CLMS)](#copernicus_clms) - [COPERNICUS MARINE ENVIRONMENT MONITORING SERVICE (CMEMS)](#copernicus_cmems) - [COPERNICUS OPEN ACCESS HUB](#copernicus_open_access_hub) * [Other Useful Data Collections](#other_useful_collections) 1. [Randiant MLHub](#radiant_mlhub) 2. [Awesome-Remote-Sensing-Dataset](#awesome_remote_sensing_dataset) 3. [awesome-remote-sensing](#awesome_remote_sensing_2) 4. [Awesome Remote Sensing Change Detection](#awesome_sensing_detection) 5. [Remote sensing resources](#remote_sensing_resources) -->

Callisto Generated Datasets <a name="callisto_generated"></a>

Note that for some of the Callisto-generated datasets, AI models have been utilized to clean the data and/or generate labels. This is explicitly mentioned wherever it applies.

Existing Datasets <a name="existing"></a>

Agriculture <a name="agriculture"></a>

Analysis Ready Remote Sensing Data with labels <a name="agriculture_ard_labels"></a>

Analysis Ready Remote Sensing Data without labels <a name="agriculture_ard_no_labels"></a>

In-situ & Ground-level datasets <a name="agriculture_insitu"></a>

Geo-referenced labels <a name="agriculture_georef_labels"></a>

<!-- - [Farm Map (Korean Ministry of Agriculture, Food and Rural Affairs)](http://data.nsdi.go.kr/dataset/20210707ds00001) <a name="farm_map_korea_agriculture"></a> <br /> Korean Ministry of Agriculture, Food and Rural Affairs(MAFRA) provides farm map, which was produced by a visual interpretation on aerial photos and satellite images based on the parcel boundary of national GIS data. It classifies 6 major parcel types (Rice paddy, Field, Orchard, Cultivation structure, Ginseng, Fallow ground). The dataset was produced at different year for each administration boundary. The data is available only for the registered domestic researchers. Therefore, please ask for cooperation to the Korean researcher in order to use it for the research. --> <!-- - [PEP725]( http://www.pep725.eu/data_download/data_selection.php) <a name="pep725"></a><br /> The main objective of PEP725 is to promote and facilitate phenological research by delivering a pan European phenological database with an open, unrestricted data access for science, research and education ([datapolicy](http://www.pep725.eu/downloads/PEP725_Data_Use_Policy_201805.pdf)). [[Paper]](https://doi.org/10.1007/s00484-018-1512-8) | Data Source | Type | Area | Task | Paper | Code | | :------------:|:-----:|:------:| :------------------------:|:-----:|:--------:| | -| - | - | - |-|-| -->

Land change <a name="land"></a>

Analysis Ready Remote Sensing Data with labels <a name="land_ard_labels"></a>

Analysis Ready Remote Sensing Data without labels <a name="land_ard_no_labels"></a>

In-situ & Ground-level datasets <a name="land_ard_insitu"></a>

Geo-referenced labels <a name="land_ard_georef_labels"></a>

Water quality <a name="water"></a>

Analysis Ready Remote Sensing Data with labels <a name="water_ard_labels"></a>

Analysis Ready Remote Sensing Data without labels <a name="water_ard_no_labels"></a>

In-situ & Ground-level datasets <a name="water_insitu"></a>

Geo-referenced labels <a name="water_georef_labels"></a>

Air quality <a name="air"></a>

Analysis Ready Remote Sensing Data with labels <a name="air_ard_labels"></a>

Analysis Ready Remote Sensing Data without labels <a name="air_ard_no_labels"></a>

In-situ & Ground-level datasets <a name="air_insitu"></a>

Geo-referenced labels <a name="air_georef_labels"></a>

Other <a name="other"></a>

Analysis Ready Remote Sensing Data with labels <a name="other_ard_labels"></a>

Analysis Ready Remote Sensing Data with labels <a name="other_ard_labels"></a>

Analysis Ready Remote Sensing Data without labels <a name="other_ard_no_labels"></a>

In-situ & Ground-level datasets <a name="other_insitu"></a>

Geo-referenced labels <a name="other_georef_labels"></a>

<!-- ### Ancillary Crop Related Annotated Datasets <a name="ancillary_crop_related_annotated"></a> --> <!-- - Crop Deep <a name="crop_deep"></a> <br /> This is the resulting work of this [paper](https://www.mdpi.com/1424-8220/19/5/1058), according to which, the CropDeep dataset is available from the corresponding author by email. -->

Web Application / Websites with labelled data <a name="web_application_websites_labelled_data"></a>

European projects <a name="eu_projects"></a>

Other Useful Data Collections <a name="other_useful_collections"></a>

<!-- - [awesome-remote-sensing](https://github.com/attibalazs/awesome-remote-sensing): <a name="awesome_remote_sensing_2"></a> T --> <!-- - [Remote sensing resources](https://github.com/jqtrde/remote): <a name="remote_sensing_resources"></a> -->

Contact

Acknowledgements

This work has been supported by the CALLISTO project which has been funded by EU's Horizon 2020 research and innovation programme under grant agreement No. 101004152.

Curated by the Beyond Center of EO Research and Satellite Remote Sensing, IAASARS, National Observatory of Athens

<p float="left"> <img src="img/callisto_logo.jpg" width="200" /> <img src="img/noa_beyond_logo.png" width="200" /> </p>