Awesome
Learning To Count Anything: Reference-less Class-agnostic Counting with Weak Supervision
**Project Page | Latest arXiv | Dataset **
Michael Hobley, Victor Adrian Prisacariu.
Active Vision Lab (AVL), University of Oxford.
Environment
We provide a environment.yml
file to set up a conda
environment:
git clone https://github.com/ActiveVisionLab/ABC123.git
cd ABC123
conda env create -f environment.yml
Dataset Download
MCAC
Dowload MCAC to precompute ground truth density maps for other resolutions, occlusion percentages, and gaussian standard deviations:
cd PATH/TO/MCAC/
python make_gaussian_maps.py --occulsion_limit <desired_max_occlusion> --crop_size 672 --img_size <desired_resolution> --gauss_constant <desired_gaussian_std>;
Trained Model Download
We provide example weights for our models trained on MCAC. Put this in ./checkpoints/.
Example Training
To train the counting network:
python main.py --config ABC123;
Example Testing
To test a trained model on MCAC:
python main.py --config ABC123test;
To test a trained model on MCAC-M1:
python main.py --config ABC123testM1;
Citation
@article{hobley2023abc,
title={ABC Easy as 123: A Blind Counter for Exemplar-Free Multi-Class Class-agnostic Counting},
author={Michael A. Hobley and Victor A. Prisacariu},
journal={Proceedings of the European Conference on Computer Vision},
year={2024},
}