Awesome
AMchat 高等数学大模型
<div align="center"> <img src="./assets/logo.png" width="200"/> <div align="center"> <b><font size="5">AMchat</font></b> </div>🤗HuggingFace | | <img src="./assets/modelscope_logo.png" width="20px" /> ModelScope | 🤗HuggingFace-GGUF
| 🆕Update News | 🤔Reporting Issues 丨
</div>📝目录
📖 简介
AM (Advanced Mathematics) chat 是一个集成了数学知识和高等数学习题及其解答的大语言模型。该模型使用 Math 和高等数学习题及其解析融合的数据集,基于 InternLM2-Math-7B 模型,通过 xtuner 微调,专门设计用于解答高等数学问题。
如果你觉得这个项目对你有帮助,欢迎 ⭐ Star,让更多的人发现它!
<p align="center"> <img src="assets/tech_route.svg" alt="route" width="100%"> </p>🚀 News
[2024.08.09] 我们发布了Q8_0量化模型 AMchat-q8_0.gguf。
[2024.06.23] InternLM2-Math-Plus-20B 模型微调。
[2024.06.22] InternLM2-Math-Plus-1.8B 模型微调,开源小规模数据集。
[2024.06.21] 更新README,InternLM2-Math-Plus-7B 模型微调。
[2024.03.24] 2024浦源大模型系列挑战赛(春季赛)Top12,创新创意奖。
[2024.03.14] 模型上传至HuggingFace。
[2024.03.08] 完善了README,增加目录、技术路线。增加README_en-US.md。
[2024.02.06] 支持了Docker部署。
[2024.02.01] AMchat第一版部署上线 https://openxlab.org.cn/apps/detail/youngdon/AMchat 🚀
🛠️ 使用方法
快速开始
- 下载模型
参考 模型的下载 。
pip install modelscope
from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('yondong/AMchat', cache_dir='./')
</details>
<details>
<summary> 从 OpenXLab </summary>
参考 下载模型 。
pip install openxlab
from openxlab.model import download
download(model_repo='youngdon/AMchat',
model_name='AMchat', output='./')
</details>
- 本地部署
git clone https://github.com/AXYZdong/AMchat.git
python start.py
- Docker部署
docker run -t -i --rm --gpus all -p 8501:8501 guidonsdocker/amchat:latest bash start.sh
重新训练
环境搭建
- clone 本项目
git clone https://github.com/AXYZdong/AMchat.git
cd AMchat
- 创建虚拟环境
conda env create -f environment.yml
conda activate AMchat
pip install xtuner
XTuner微调
- 准备配置文件
# 列出所有内置配置
xtuner list-cfg
mkdir -p /root/math/data
mkdir /root/math/config && cd /root/math/config
xtuner copy-cfg internlm2_chat_7b_qlora_oasst1_e3 .
- 模型下载
mkdir -p /root/math/model
download.py
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm2-math-7b', cache_dir='/root/math/model')
- 修改配置文件
仓库中
config
文件夹下已经提供了一个微调的配置文件,可以参考internlm_chat_7b_qlora_oasst1_e3_copy.py
。 可以直接使用,注意修改pretrained_model_name_or_path
和data_path
的路径。
cd /root/math/config
vim internlm_chat_7b_qlora_oasst1_e3_copy.py
# 修改模型为本地路径
- pretrained_model_name_or_path = 'internlm/internlm-chat-7b'
+ pretrained_model_name_or_path = './internlm2-math-7b'
# 修改训练数据集为本地路径
- data_path = 'timdettmers/openassistant-guanaco'
+ data_path = './data'
- 开始微调
xtuner train /root/math/config/internlm2_chat_7b_qlora_oasst1_e3_copy.py
- PTH 模型转换为 HuggingFace 模型
mkdir hf
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_chat_7b_qlora_oasst1_e3_copy.py \
./work_dirs/internlm2_chat_7b_qlora_oasst1_e3_copy/epoch_3.pth \
./hf
- HuggingFace 模型合并到大语言模型
# 原始模型参数存放的位置
export NAME_OR_PATH_TO_LLM=/root/math/model/Shanghai_AI_Laboratory/internlm2-math-7b
# Hugging Face格式参数存放的位置
export NAME_OR_PATH_TO_ADAPTER=/root/math/config/hf
# 最终Merge后的参数存放的位置
mkdir /root/math/config/work_dirs/hf_merge
export SAVE_PATH=/root/math/config/work_dirs/hf_merge
# 执行参数Merge
xtuner convert merge \
$NAME_OR_PATH_TO_LLM \
$NAME_OR_PATH_TO_ADAPTER \
$SAVE_PATH \
--max-shard-size 2GB
- Demo
streamlit run web_demo.py --server.address=0.0.0.0 --server.port 7860
OpenXLab应用部署
仅需要 Fork 本仓库,然后在 OpenXLab 上创建一个新的项目,将 Fork 的仓库与新建的项目关联,即可在 OpenXLab 上部署 AMchat。
<p align="center"> <img src="assets/deploy_2.png" alt="Demo" width="100%"> </p>- AMchat 与 InternLM2-Math-7B 在积分问题上对于同一问题的解答。 AMchat 回答正确,InternLM2-Math-7B 回答错误。
LMDeploy量化
- 首先安装LMDeploy
pip install -U lmdeploy
- 然后转换模型为
turbomind
格式
--dst-path: 可以指定转换后的模型存储位置。
lmdeploy convert internlm2-chat-7b 要转化的模型地址 --dst-path 转换后的模型地址
- LMDeploy Chat 对话
lmdeploy chat turbomind 转换后的turbomind模型地址
OpenCompass评测
- 安装 OpenCompass
git clone https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
- 下载解压数据集
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip
- 评测启动!
python run.py \
--datasets math_gen \
--hf-path 模型地址 \
--tokenizer-path tokenizer地址 \
--tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True \
--model-kwargs device_map='auto' trust_remote_code=True \
--max-seq-len 2048 \
--max-out-len 16 \
--batch-size 2 \
--num-gpus 1 \
--debug
LMDeploy & OpenCompass量化以及量化评测
<details> <summary><strong> W4 </strong> 量化评测 </summary>W4
量化
lmdeploy lite auto_awq 要量化的模型地址 --work-dir 量化后的模型地址
- 转化为
TurbMind
lmdeploy convert internlm2-chat-7b 量化后的模型地址 --model-format awq --group-size 128 --dst-path 转换后的模型地址
- 评测
config
编写
from mmengine.config import read_base
from opencompass.models.turbomind import TurboMindModel
with read_base():
# choose a list of datasets
from .datasets.ceval.ceval_gen import ceval_datasets
# and output the results in a choosen format
# from .summarizers.medium import summarizer
datasets = [*ceval_datasets]
internlm2_chat_7b = dict(
type=TurboMindModel,
abbr='internlm2-chat-7b-turbomind',
path='转换后的模型地址',
engine_config=dict(session_len=512,
max_batch_size=2,
rope_scaling_factor=1.0),
gen_config=dict(top_k=1,
top_p=0.8,
temperature=1.0,
max_new_tokens=100),
max_out_len=100,
max_seq_len=512,
batch_size=2,
concurrency=1,
# meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
models = [internlm2_chat_7b]
- 评测启动!
python run.py configs/eval_turbomind.py -w 指定结果保存路径
</details>
<details>
<summary> <strong> KV Cache </strong> 量化评测 </summary>
- 转换为
TurbMind
lmdeploy convert internlm2-chat-7b 模型路径 --dst-path 转换后模型路径
- 计算与获得量化参数
# 计算
lmdeploy lite calibrate 模型路径 --calib-dataset 'ptb' --calib-samples 128 --calib-seqlen 2048 --work-dir 参数保存路径
# 获取量化参数
lmdeploy lite kv_qparams 参数保存路径 转换后模型路径/triton_models/weights/ --num-tp 1
- 更改
quant_policy
改成4
,更改上述config
里面的路径 - 评测启动!
python run.py configs/eval_turbomind.py -w 结果保存路径
</details>
- 结果文件与评测数据集可在同目录文件results中获取。
💕 致谢
项目成员
- 张友东-项目负责人 (Datawhale成员 书生·浦语实战营助教 负责模型训练,OpenXlab应用部署,数据收集,RAG内容整理,InternLM2-Math-Plus微调规划)
- 宋志学-项目负责人 (Datawhale成员 书生·浦语实战营助教 负责项目规划,RAG框架)
- 肖鸿儒-项目负责人 (Datawhale成员 同济大学 书生·浦语实战营助教 负责数据收集,数据集整理及增强,模型量化与评测,RAG推理与验证)
- 程宏 (书生·浦语实战营助教&Datawhale鲸英助教 InternLM2-Math-Plus-7B 模型微调&部署)
- 莫宝琪(玉柴工程研究院 InternLM2-Math-Plus-1.8B 模型微调)
- 陈辅元(甘肃政法大学 InternLM2-Math-Plus-20B 模型微调)
- 龚鹤扬 (中国科学技术大学统计学博士 LMDeploy 模型量化)
- 揭熔阳 (Datawhale成员 哈尔滨工业大学(威海) 数据收集 RAG内容整理)
- 彭琛 (Datawhale成员 数据收集)
- 王新茗 (数据收集)
- 刘志文 (Datawhale成员 山东女子学院 数据收集)
- 王睿玥 (Northeastern University 数据收集)
- 陈逸涵 (Datawhale成员 北京邮电大学 数据收集)
- guidons (东北大学 docker部署)
- eltociear (Board member at I-Tecnology Co., Ltd.,增加 Japanese README)
特别鸣谢
<div align="center">感谢上海人工智能实验室组织的 书生·浦语实战营 学习活动~
感谢 OpenXLab 对项目部署的算力支持~
感谢 浦语小助手 对项目的支持~
感谢上海人工智能实验室推出的书生·浦语大模型实战营,为我们的项目提供宝贵的技术指导和强大的算力支持!
InternLM-tutorial、InternStudio、xtuner、InternLM-Math
<a href="https://github.com/AXYZdong/AMchat/graphs/contributors"> <img src="https://contrib.rocks/image?repo=AXYZdong/AMchat" /> </a> </div>🖊️ Citation
@misc{2024AMchat,
title={AMchat: A large language model integrating advanced math concepts, exercises, and solutions},
author={AMchat Contributors},
howpublished = {\url{https://github.com/AXYZdong/AMchat}},
year={2024}
}
开源许可证
该项目采用 Apache License 2.0 开源许可证 同时,请遵守所使用的模型与数据集的许可证。