Home

Awesome

<div align="center"> <h1>CV-VAE: A Compatible Video VAE for Latent Generative Video Models</h1>

Sijie Zhao · Yong Zhang* · Xiaodong Cun · Shaoshu Yang · Muyao Niu

Xiaoyu Li · Wenbo Hu · Ying Shan

<sup>*</sup>Corresponding Authors

<a href='https://ailab-cvc.github.io/cvvae/index.html'><img src='https://img.shields.io/badge/Project-Page-green'></a> <a href='https://arxiv.org/abs/2405.20279'><img src='https://img.shields.io/badge/Technique-Report-red'></a>

</div>

TL; DR: A video VAE for latent generative video models, which is compatible with pretrained image and video models, e.g., SD 2.1 and SVD

<p align="center"> <img src="assets/i2v_and_t2v_results.gif"> </p>

News

Usage

Dependencies

Video reconstruction

Download the model weight from Hugging Face

python3 cvvae_inference_video.py \
  --vae_path MODEL_PATH \
  --video_path INPUT_VIDEO_PATH \
  --save_path VIDEO_SAVE_PATH \
  --height HEIGHT \
  --width WIDTH 

😉 Citation

@article{zhao2024cvvae,
  title={CV-VAE: A Compatible Video VAE for Latent Generative Video Models},
  author={Zhao, Sijie and Zhang, Yong and Cun, Xiaodong and Yang, Shaoshu and Niu, Muyao and Li, Xiaoyu and Hu, Wenbo and Shan, Ying},
  journal={https://arxiv.org/abs/2405.20279},
  year={2024}
}