Home

Awesome

<p align="center"> <h1 align="center">DeMo: Decoupled Feature-Based Mixture of Experts for Multi-Modal Object Re-Identification</h1> <p align="center"> <img src="results/logo.png" alt="Description of the image" style="width:54%;"> <p align="center"> <p align="center"> <a href="https://scholar.google.com/citations?user=WZvjVLkAAAAJ&hl=zh-CN" rel="external nofollow noopener" target="_blank"><strong>Yuhao Wang</strong></a> 路 <a href="https://dblp.org/pid/51/3710-66.html" rel="external nofollow noopener" target="_blank"><strong>Yang Liu</strong></a> 路 <a href="https://ai.ahu.edu.cn/2022/0407/c19212a283203/page.htm" rel="external nofollow noopener" target="_blank"><strong>Aihua Zheng</strong></a> 路 <a href="https://scholar.google.com/citations?user=MfbIbuEAAAAJ&hl=zh-CN" rel="external nofollow noopener" target="_blank"><strong>Pingping Zhang*</strong></a> </p> <p align="center"> <a href="https://arxiv.org/pdf/2412.10650" rel="external nofollow noopener" target="_blank">AAAI 2025 Paper</a> <p align="center"> <img src="results/Overall.png" alt="RGBNT201 Results" style="width:100%;"> </p>

DeMo is an advanced multi-modal object Re-Identification (ReID) framework designed to tackle dynamic imaging quality variations across modalities. By employing decoupled features and a novel Attention-Triggered Mixture of Experts (ATMoE), DeMo dynamically balances modality-specific and modality-shared information, enabling robust performance even under missing modality conditions. The framework sets new benchmarks for multi-modal and missing-modality object ReID.

News


Table of Contents


Introduction

Multi-modal object ReID combines the strengths of different modalities (e.g., RGB, NIR, TIR) to achieve robust identification across challenging scenarios. DeMo introduces a decoupled approach using Mixture of Experts (MoE) to preserve modality uniqueness and enhance diversity. This is achieved through:

  1. Patch-Integrated Feature Extractor (PIFE): Captures multi-granular representations.
  2. Hierarchical Decoupling Module (HDM): Separates modality-specific and shared features.
  3. Attention-Triggered Mixture of Experts (ATMoE): Dynamically adjusts feature importance with adaptive attention-guided weights.

Contributions


Results

Multi-Modal Object ReID

Multi-Modal Person ReID [RGBNT201]

<p align="center"> <img src="results/RGBNT201.png" alt="RGBNT201 Results" style="width:100%;"> </p>

Multi-Modal Vehicle ReID [RGBNT100 & MSVR310]

<p align="center"> <img src="results/RGBNT100_MSVR310.png" alt="RGBNT100 Results" style="width:100%;"> </p>

Missing-Modality Object ReID

Missing-Modality Performance [RGBNT201]

<p align="center"> <img src="results/RGBNT201_M.png" alt="RGBNT201 Missing-Modality" style="width:100%;"> </p>

Missing-Modality Performance [RGBNT100]

<p align="center"> <img src="results/RGBNT100_M.png" alt="RGBNT100 Missing-Modality" style="width:100%;"> </p>

Ablation Studies [RGBNT201]

<p align="center"> <img src="results/Ablation.png" alt="RGBNT201 Ablation" style="width:100%;"> </p>

Visualizations

Feature Distribution (t-SNE)

<p align="center"> <img src="results/tsne.png" alt="t-SNE" style="width:100%;"> </p>

Decoupled Features

<p align="center"> <img src="results/Decoupled.png" alt="Decoupled Features" style="width:100%;"> </p>

Rank-list Visualization

<p align="center"> <img src="results/rank-list.png" alt="Rank-list" style="width:100%;"> </p>

Reproduction

Datasets

Pretrained Models

Configuration

Training

#!/bin/bash
# python = 3.10.13
# cuda = 11.8
source activate (your_env)
cd (your_path)
pip install -r requirements.txt
python train_net.py --config_file configs/RGBNT201/DeMo.yml

Notes


Star History

Star History Chart


Citation

If you find DeMo helpful in your research, please consider citing:

@inproceedings{wang2025DeMo,
  title={DeMo: Decoupled Feature-Based Mixture of Experts for Multi-Modal Object Re-Identification},
  author={Wang, Yuhao and Liu, Yang and Zheng, Aihua and Zhang, Pingping},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2025}
}