Awesome
UDT_pytorch
This repository contains a Python reimplementation of the Unsupervised Deep Tracking
Ning Wang, Yibing Song, Chao Ma, Wengang Zhou, Wei Liu, and Houqiang Li
to appear in CVPR 2019
Acknowledges
The results of this implementation may be slightly different from the original UDT. The results in our paper are obtained using the MatconvNet implementation.
Our baseline method is DCFNet and many parts of the code are from DCFNet_pytorch. For more details, you can refer to DCFNet_pytorch. The main differences are (1) unsupervised data preprocessing (please check the train/dataset/
folder); (2) our training code utilizes forward tracking and backward verification to train the model (please check the train/train_UDT.py
file). (3) This implementation is a simplified version, and I will update it later.
Requirements
Requirements for PyTorch 0.4.0 and opencv-python
conda install pytorch torchvision -c pytorch
conda install -c menpo opencv
Training data (VID) and Test dataset (OTB).
Test
cd UDT_pytorch/track
ln -s /path/to/your/OTB2015 ./dataset/OTB2015
ln -s ./dataset/OTB2015 ./dataset/OTB2013
cd dataset & python gen_otb2013.py
python UDT.py --model ../train/work/checkpoint.pth.tar
Train
-
Download training data. (ILSVRC2015 VID)
-
Prepare training data for
dataloader
.cd UDT_pytorch/train/dataset python parse_vid.py <VID_path> # save all vid info in a single json python crop_image.py # crop and generate a json for dataloader
-
Training. (on multiple GPUs :zap: :zap: :zap: :zap:)
cd UDT_pytorch/train/ CUDA_VISIBLE_DEVICES=0,1,2,3 python train_UDT.py
Fine-tune hyper-parameter
-
After training, you can simple test the model with default parameter.
cd UDT_pytorch/track/ python UDT.py --model ../train/work/crop_125_2.0/checkpoint.pth.tar
-
Search a better hyper-parameter.
CUDA_VISIBLE_DEVICES=0 python tune_otb.py # run on parallel to speed up searching python eval_otb.py OTB2013 * 0 10000
License
Licensed under an MIT license.
Citation
If you find this work useful for your research, please consider citing our work and DCFNet:
@inproceedings{Wang_2019_Unsupervised,
title={Unsupervised Deep Tracking},
author={Wang, Ning and Song, Yibing and Ma, Chao and Zhou, Wengang and Liu, Wei and Li, Houqiang},
booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2019}
}
@article{wang17dcfnet,
Author = {Qiang Wang, Jin Gao, Junliang Xing, Mengdan Zhang, Weiming Hu},
Title = {DCFNet: Discriminant Correlation Filters Network for Visual Tracking},
Journal = {arXiv preprint arXiv:1704.04057},
Year = {2017}
}
Contact
If you have any questions, please feel free to contact wn6149@mail.ustc.edu.cn